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Abstract 

 
     The nonlinear interaction of the linearly and circularly polarized 

Laguerre-Gaussian (LG) laser pulse with an inhomogeneous parabolic plasma 

channel is studied. We consider the transfer of the orbital angular momentum 

(OAM) associated with the LG mode of the laser photon to the plasma electron. 

This results in the excitation of the magnetic field. The governing equations for 

the transfer of orbital angular momentum and the effective mass of photons in a 

plasma are derived. The analysis of the generation of magnetic fields Bz and Bφ 

for the different azimuthal angles and the laser beam intensities has been carried 

out. The results are analyzed numerically and compared with the results of 2D 

particle-in-cell (PIC) simulation of the Laguerre-Gaussian mode of laser beam. It 

has been observed that the generated magnetic field depends on the orbital 

angular momentum transfer and mass correction of a photon in the relativistic 

limit. The generated magnetic field depends on the Laguerre-Gaussian mode 

order, laser intensity, azimuthal angle and the relativistic factor. It is found that 

the generated magnetic field increases with the laser intensity. The strength of the 

magnetic field also depends on the polarization state of a laser field. It is shown 

that the excitation of the magnetic field for both linearly and circularly polarized 

laser beams depends on the azimuthal angle. The magnitude of generated 

magnetic field due to circularly polarized Laguerre-Gaussian beam of higher 

modes decreases with increasing azimuthal angle and is greater than that of the 

linearly polarized beam. It is further observed that the magnetic field generated 

due to the higher Laguerre-Gaussian modes is not quasistatic but changes with 

the spatial distribution of the plasma.  

      The analysis of short nonparaxial laser pulse in plasma channel has 

also been carried out. The electron energy gain in the wake of the laser pulse at 

different magnetic field strengths is determined. The effect of magnetic field on 

the wakefield structure, channel radius and accelerating length has been analyzed. 

The plasma channel profile has been considered to be parabolic. It has been found 

that the energy gain increases with increasing magnetic field. However, the result 

illustrates the variable pattern of the energy gain for different magnetic field 



strengths. It is predicted that the autoresonance condition is achieved at ωc/ωp = 2, 

where the energy gain is maximum. The variation of the channel width as a 

function of magnetic field ratio ωc/ωp for different relativistic factors have shown 

that the channel width decreases with increasing ωc/ωp and increases with 

relativistic factor. This result shows that the laser gets self focused and hence 

there is a possibility of propagation of an intense short circularly polarized laser 

pulse over a significant extended distance. It is found that the excited wake has 

electrostatic as well as electromagnetic nature and thus excitation of the wake in 

the plasma is nonlocal. It is shown that the dephasing length increases linearly up 

to the ratio ωc/ωp ≤ 2.5 and thereafter it becomes almost constant. The results 

indicate that the accelerating length can be varied by the external magnetic field 

and the relativistic factor. These results match with the relativistic two 

dimensional (2D) PIC simulation. 

         An attosecond pulse generation based on the deformation of the 

plasma mirror as a result of laser plasma mirror interaction is discussed. We have 

presented a simple analytical model for generation of an attosecond pulse from 

the relativistic oscillating plasma mirror with E × B effect that leads to the 

rotation in the oscillating plasma mirror. As the oscillating surface rotates it 

creates an additional phase shift and distortion in the field of the reflected 

harmonic beams. This phase distortion repeats itself with periodicity of the 

driving laser field leading to the more harmonics of the incident frequency. We 

have studied the effect of the rotation on the wavefront of the reflected laser field 

and the effect of the phase divergence on the generation of the attosecond pulse. 

The results of the harmonic generation and their dependence on the intensity of 

incident laser pulse have been presented. Also, the harmonic number of the 

reflected laser field increases with the intensity of the incident laser beam.  Our 

numerical results show that the wave train of the attosecond pulses can be 

generated when the intensity of the laser beam exceeds 1018 W/cm2. It is further 

found that the rotational effect of the relativistic oscillating plasma mirror 

changes the denting mechanism of the plasma mirror. The rotational effect of 

plasma mirror due to E × B changes the phase parameter of the harmonics. 



 The effect of magnetic field on the wakefield excitation for high intense 

ultra-short laser pulse in an underdense magnetized plasma has been analyzed. 

The relation between the generated electric field and the externally applied 

magnetic field has been obtained. It is observed that the generation of the 

wakefield in the plasma due to variation in the electron density depends on the 

external magnetic field. The magnitude of the wakefield increases with magnetic 

field strength. The analytical results are compared with the particle-in-cell (PIC) 

simulation results to give an insight into the wakefield evolution. The energy 

exchange is more effective at the higher values of the magnetic field.  
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Chapter 1 

Introduction 

       Laser plasma interaction has many applications, e.g., high-order 

harmonic generation, attosecond pulse generation, fast igniter fusion, laser 

ablation of material and radiation pressure driven acceleration, laser-plasma 

channeling and x-ray lasers [1-18]. 

        After development of Chirped Pulse Amplification (CPA) technique in 

1985, the laser pulse plasma interaction has considerable progress at laser 

intensities above 1019 W/cm2, at these high intensities the laser field amplitude is 

so high that electrons will be driven almost equal to the velocity of light (i.e. v ≈ 

c) and the relativistic dynamics of electrons comes into play. 

            In relativistic regime many complex nonlinear  phenomena such as 

instabilities in plasma, relativistic self-phase modulation, filamentation, Raman 

forward, Raman backward scattering, envelop self-modulation, relativistic self-

focusing, super continuum generation, terahertz radiation generation and 

magnetic field generation occur.  

            The nonlinearity can be produced either by the relativistic effects [19, 

20] or through the modification of plasma by the ponderomotive force (or light 

pressure) of ultra-intense laser pulses [2]. When high intense ultra-short laser 

pulses propagate through a plasma, electrostatic wakefields are generated due to 

the high energy electron oscillations in the plasma field [11].  

              Quasistatic magnetic field generation due to various phenomena [19-

21] is one of the most significant nonlinear effects produced in high intense ultra-

short laser pulse plasma interactions. S. C. Wilks et al. [2] found extremely high 

self generated magnetic fields (≈ 250MG) during numerical simulation. The 

physical explaination of the generation of these extremely high magnetic fields is 

an important subject of study. 
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1.1  Background and motivation  

            The interaction of laser pulse with plasma gives rise to a variety of 

phenomena. With the development of intense ultra-short laser pulse, there has 

been a lot of interest in nonlinear effects in laser plasma interaction. An 

electron in an intense  short laser pulse acquires relativistic velocity and can 

be accelerated to high energies in the direction of laser pulse propagation by 

the ponderomotive force at the laser front [2] or by direct laser acceleration 

[22, 23] mechanism due to radiation pressure. There has been an increasing 

interest in the study of the propagation of laser pulses in plasma and the 

generation of electrostatic wakefields [6, 11, 24, 25]. The wakefield leads to 

high energy electron oscillations in the plasma field excited by the incident 

laser radiation. However, at ultra high intensities, two issues become 

important. First, strong self generated axial and/or azimuthal magnetic fields 

modify the electron dynamics and refractive index of the plasma. Second, 

electron motion is relativistic in the plasma in presence of high intense laser 

pulse. The propagation characteristic of the laser pulse changes due to 

increase in the relativistic mass (or decrease in the refractive index of the 

plasma). Many studies on the effect of magnetic field on relativistic electrons 

have been done by considering either self generated or externally applied 

magnetic fields. Wagner et al. [26] have observed the azimuthal magnetic 

fields of the order of 700 MG in overdense plasmas while in underdense 

plasmas, magnetic fields of the order of 100 MG [27].  Nazmudin et al. [28] 

have shown that a circularly polarized laser with intensity ~ 1019 W/cm2 can 

generate axial magnetic field of the order of 7 MG in the direction of laser 

propagation. These self generated magnetic fields facilitate the electron 

acceleration by intense laser pulse plasma interaction [29-31] and observed 

beam collimation as well as electron acceleration up to ultra high energies 

with the value much greater than the ponderomotive energy. Qiao et al. [32] 

have developed an analytical model of magnetic field generation by a laser in 

plasma. The effects of magnetic field on the stimulated scattering and decay 

instabilities were studied [33, 34].  Liu et al. [35] have shown that the plasma 

electron acceleration depends on laser intensity and the ratio of cyclotron 
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frequency to laser frequency. Yu et al. [36] have observed the similar 

configuration using a linearly polarized laser. They reported electron 

acceleration to relativistic energies using weak magnetic field.  

  X. He et al. [37] have reported that the phase dependence of the 

relativistic electron dynamics is sensitive to the polarization of the laser field. 

For circularly polarized field only the axis of helical trajectories is changed 

with a change in the initial phase of the laser field whereas for linearly 

polarized field the effect is sensitive to the resonance parameter that is the 

ratio of cyclotron frequency to laser frequency.  Liu and Tripathi [38] have 

examined the propagation of a linearly polarized intense Gaussian laser pulse 

in unmagnetized plasma and analyzed the nonlinear phase evolution and self 

distortion of the pulse. Sharma and Tripathi [39] have studied the interaction 

of circularly polarized intense laser pulse with plasma in the presence of axial 

magnetic field and found that the pulse suffers distortion due to nonlinearity 

induced by the relativistic mass in the refractive index of the plasma and they 

have examined electron acceleration by a circularly polarized Gaussian laser 

pulse in magnetized plasma and found that the ponderomotive force is 

significantly enhanced at the laser magnetic resonance also [12]. R. Singh and 

Tripathi [40] studied the filamentation instability of a circularly polarized 

relativistic short laser pulse under the combined effects of relativistic and 

ponderomotive nonlinearities in magnetized plasma.  

              Vortex beams carrying intrinsic angular momentum are widely 

analyzed and used [41-43].  

               High order harmonics are applied in the field of diagnostics, 

coherent radiation sources, lithography [44-46] and in the attosecond pulse 

generation. 

    Ivan P. Chriton et al. [47] theoretically studied high-order 

harmonic generation with excitation pulses shorter than 25 fs using three 

dimensional (3D) model. M. V. Frolov et al. [48] described analytic formulae 

related to harmonic generation by a weakly bound electron in the tunneling 

limit of a quantum mechanical analysis. F. Quéré et al. [49] theoretically and 

experimentally presented a mechanism of high-order harmonic generation by 
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reflection of laser from an overdense plasma. K. Eidmann et al. [50] 

investigated the emission efficiencies, polarization properties and the spectral 

shapes of the fundamental frequency and the second harmonic. H. Yang et al. 

[51] have experimentally shown that emission of electromagnetic radiation in 

ultraviolet region makes a major contribution to third-order harmonic. Guihua 

Zeng et al. [52] have shown that the relativistic harmonic excitation is more 

efficient in the short laser pulse regime than in the long laser pulse regime. L. 

Allen et al. [53] have studied the rate of electromagnetic energy flow per unit 

area, the Poynting vector, using local linear momentum density in Laguerre-

Gaussian mode and experimentally shown the transfer of orbital angular 

momentum associated with Laguerre-Gaussian mode [54].   

                            Simulation studies on the laser pulse plasma interaction 

have also a long history. Self consistent calculations have been initially used 

by Buneman [55] and Dawson [56] and they introduced the power of 

computational plasma physics. Birdsall and Langdon [57] and Hockney and 

Eastwood [58] described particle-in-cell (PIC) scheme in detail. Vahedi and 

Surendra [59] introduced differential cross section concept for laser plasma 

interaction simulation refining the results of particle-in-cell model. Object-

oriented methods were applied to particle-in-cell codes to obtain realistic 

solutions of the problems [60]. Particle-in-cell simulation codes are not only 

used in the area of basic Physics but also in engineering devices. These codes 

have been used in various studies in order to have more reliable results in 

different conditions [61-64]. 

Some of the concepts/phenomena in the present thesis are briefly discussed as 

under. 

1.2  High intense ultra-short laser pulses 
            After invention of Chirped Pulse Amplification (CPA) technique, 

firstly used by Strickland and Mourou [65] during 1985, high power lasers are 

used to investigate new features in laser plasma experiments. In Chirped 

Pulse Amplification technique, the laser pulse is stretched in time (i. e. 

chirped in frequency) then it is amplified and lastly compressed to achieve 

ultra-short laser pulses [66-68].  
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                    The advantage of chirped pulse amplification technique to 

achieve ultra-short pulses is that not only the duration of the pulse is 

shortened but also the power of the laser is greatly enhanced, due to which the 

power density or intensity of laser pulse goes much beyond 1019 W/cm2. The 

invention of these high power laser pulses has opened up new areas in 

experimental Physics to discover more advanced phenomena [69]. 

                  In the present work the profiles of the laser pulse taken are 

Gaussian and Laguerre-Gaussian.  

1.2.1 Gaussian mode  
The wave equation in a three dimensional media is given as  

 𝛻𝛻2E = 1
𝜐𝜐2

𝜕𝜕2𝐸𝐸
𝜕𝜕𝜕𝜕 2  ,           (1.1) 

where   

 𝛻𝛻2 = 𝜕𝜕2

𝜕𝜕𝜕𝜕 2 + 𝜕𝜕2

𝜕𝜕𝜕𝜕 2 + 𝜕𝜕2

𝜕𝜕𝜕𝜕 2   

is the Laplacian and  υ is the phase velocity. 

The solution of a wave propagated along z-axis may be given as 

E(x,y,z,t) = E0  e-i(ωt-kz),      (1.2) 

where E0, ω and k (= ω/υ) are the amplitude, frequency and propagation 

constant of the wave respectively. 

Using the equation (1.2) in equation (1.1) gives 

𝜕𝜕2𝐸𝐸0
𝜕𝜕𝜕𝜕 2 + 𝜕𝜕2𝐸𝐸0

𝜕𝜕𝜕𝜕 2 + 𝜕𝜕2𝐸𝐸0
𝜕𝜕𝜕𝜕 2 + 2𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕0

𝜕𝜕𝜕𝜕
= 0.      (1.3) 

Since E0 slowly varies along the direction of propagation, that is along z, 

hence 𝜕𝜕
2𝐸𝐸0
𝜕𝜕𝜕𝜕 2  can be neglected as compared to 𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕0

𝜕𝜕𝜕𝜕
. This kind of wave is 

known as paraxially propagating wave. 

Under the paraxial approximation, the above equation has the form 
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𝜕𝜕2𝐸𝐸0
𝜕𝜕𝜕𝜕 2 + 𝜕𝜕2𝐸𝐸0

𝜕𝜕𝜕𝜕 2 + 2𝑖𝑖𝑖𝑖 𝜕𝜕𝜕𝜕0
𝜕𝜕𝜕𝜕

= 0.       (1.4) 

Let the solution of the equation (1.4) under paraxial propagation is given 

as 

E0 =  E00 e− ik r2

2a (z ) eib(z),       (1.5)  

where E00 is a normalized constant, r2 = x2 +y2, a(z) and b(z) are variables 

defined as under. 

 a(z) = z + i zR,        (1.6) 

here zR is a constant known as Rayleigh range (distance from focal point 

to the point where beam area doubles, given by zR = kw0
2/2 = πw0

2/λ, here 

w0 is beam waist ) which gives divergence of the beam, i.e., higher 

Rayleigh range indicate higher divergence and smaller Rayleigh range 

indicate smaller divergence of the beam . 

Equation (1.6) can also be written as 

1
a(𝑧𝑧)

= 1

𝑧𝑧+
𝑧𝑧𝑅𝑅

2

𝑧𝑧

− 𝑖𝑖

𝑧𝑧𝑅𝑅(1+ 𝑧𝑧
2

𝑧𝑧𝑅𝑅
2 )

 .      (1.7) 

Using this form of a(z) in equation (1.5) gives 

E0(x, y, z) =  E00 e− ik r2

2R (z )  e 
−r2

w (z )2 eib (z),     (1.8)  

where R(z) is called the radius of curvature  at a point z and is given by 

R(z) = z + zR   
2

z
 .        (1.9) 

This shows a wavefront with varying radius of curvature. 

If z = 0, R(z) = ∞ which shows it is a plane wavefront. 

 If z >> zR, R(z) = z means it is a spherical wavefront, 

and if z = zR, R(z) = 2z is defined as the turning point. 
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w(z) in equation (1.8) shows z-dependence of the beam spot size at point 

z of the beam and is given by 

𝑤𝑤(𝑧𝑧) = 𝑤𝑤0�1 + 𝑧𝑧2

𝑧𝑧𝑅𝑅
2  ,         (1.10) 

where 

 𝑤𝑤0 = �𝜆𝜆
𝜋𝜋
𝑧𝑧𝑅𝑅           (1.11) 

is the beam waist. 

At z = 0, beam spot size w(z) = w0, which is the minimum spot size 

(called as beam waist), hence, z = 0 is a special point in the propagation of 

the Gaussian beam.  

For z > 0 and z < 0, the beam spot size w(z) increases. 

At z = zR, w(z) = √2 w0 defines a turning point in the propagation of the 

beam where spot size does not remain constant but increases linearly.  

For z >> zR, w(z) = w0 (z/zR) ≈ z θ, where θ is called divergence angle of 

the beam and is given by  

  θ = w0/zR  ≈ � 𝜆𝜆
𝜋𝜋𝑧𝑧𝑅𝑅

 =�𝜆𝜆
𝜋𝜋

𝜆𝜆
𝜋𝜋𝑤𝑤0

2 = 𝜆𝜆
𝜋𝜋𝑤𝑤0

,       (1.12) 

which shows that larger is the beam waist, smaller shall be the divergence 

of the beam (Figure 1.1). 

To obtain the solution of the equation (1.5), let eib(z) has the form 

𝑒𝑒𝑖𝑖𝑖𝑖(𝑧𝑧) = 𝑤𝑤0
𝑤𝑤(𝑧𝑧)

𝑒𝑒−𝑖𝑖𝑖𝑖 (𝑧𝑧),        (1.13) 

where 

 𝜙𝜙(𝑧𝑧) =  𝑡𝑡𝑡𝑡𝑡𝑡−1 𝑧𝑧
𝑧𝑧𝑅𝑅

         (1.14) 
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is the Gouy phase, which shows the rapid phase change in the field when 

beam passes through the minimal diameter (focal point) of the beam. 

Gouy phase approaches the limit ± π/2  as z → ±∞. It is an important 

factor in the situation where wavefront is very complex. 

So, the solution of the equation (1.1) is obtained by using equations (1.2), 

(1.8) and (1.13) as  

𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐸𝐸00
𝑤𝑤0
𝑤𝑤(𝑧𝑧)

 e 
−r2

w (z )2  𝑒𝑒−𝑖𝑖(𝜔𝜔𝜔𝜔−𝑘𝑘𝑘𝑘) e−
ik r2

2R (z ) eiϕ(z),   (1.15) 

where first three terms give the amplitude of the beam and last three terms 

show phase of the beam. 

 

 

 

 

 

 

Figure 1.1: A Gaussian beam. 

 

The value of the E00 in the equation (1.15) is determined by the 

normalization condition and is given by  

E00 = √ (2/π)        (1.16)  

The amplitude of a beam depends on a factor w0/w(z) which is nearly 

constant up to z ≤ zR and for z >> zR it decreases as 1/z. 
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1.2.2 Laguerre-Gaussian mode 

  The solution of the equation (1.4) in the above analysis is carried 

out under the assumption that x and y coordinates are dependent on each 

other. 

 Now, suppose the coordinates are independent and the solution given as 

 E(x, y, z) =  E0 f(x, z) g(y, z)  e− ik r2

2a (z )eib(z),     (1.17)  

where E0 is a constant part, f(x,z) and g(y,z) are variable parts of the 

amplitude and  a(z), b(z) and k are as defined in the previous section. 

After long and complex analytical calculations in the cylindrical 

coordinate system the more general solution is written as [70] 

𝐸𝐸𝑝𝑝 ,|𝑙𝑙|(𝜌𝜌,𝜃𝜃, 𝑧𝑧, 𝑡𝑡) = 𝐴𝐴𝑝𝑝 ,|𝑙𝑙|  𝑤𝑤0
𝑤𝑤(𝑧𝑧)

 (√2𝜌𝜌
𝑤𝑤(𝑧𝑧)

)|𝑙𝑙| 𝐿𝐿𝑝𝑝
|𝑙𝑙| � 2𝜌𝜌2

𝑤𝑤(𝑧𝑧)2� e−( ρ2

w (z )2)𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔 )   ×

e
ik 𝜌𝜌2

2R (z ) ei|𝑙𝑙|θ eiϕ(z).        (1.18) 

Equation (1.18) contains the associated Laguerre function 𝐿𝐿𝑝𝑝
|𝑙𝑙| with (p+1) 

radial nods, where p and |𝑙𝑙| are the radial and azimuthal index of the 

Laguerre function. So, these modes are termed as Laguerre-Gaussian 

modes. 

 Since the solutions are dependent on radial distribution of the 

beam, hence the intensity profile has ring like structures. For |𝑙𝑙| ≠ 0, p = 0 

beam has doughnut shaped structure with the radius of doughnut 

proportional to |𝑙𝑙|
1
2. The phase of the Laguerre-Gaussian mode varies as 

|𝑙𝑙|𝜃𝜃 showing that the wavefront has helix like structure (i.e., Vortex) with 

pitch λ.  

    The Laguerre-Gaussian modes are cylindrically symmetric 

along the direction of propagation and carry orbital angular momentum 

equal to |𝑙𝑙| ħ per photon [71, 72]. Since the vortex beam possesses orbital 

angular momentum thus a torque is experienced by the refractive media 

placed along the direction of the propagation axis and thus a spiraling 

current is produced by the azimuthal gradient of the helical phase. That’s 
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why the magnetic field so produced is very important to determine the 

plasma electron dynamics in the ultra-intense laser pulse. 

1.3  Intense ultra-short laser pulse plasma interaction 

1.3.1 Electron dynamics under ultra-short pulses 
The equation of motion of electrons in ultra-short laser pulse is given by 
𝑑𝑑𝒑𝒑
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝛾𝛾𝛾𝛾𝛾𝛾) = −𝑒𝑒 �𝑬𝑬 + 1
𝑐𝑐

(𝒗𝒗× 𝑩𝑩)�,         (1.19) 

where p, m, e, v and 𝛾𝛾 are relativistic linear momentum, effective mass, 

charge, velocity of the electrons and relativistic factor respectively.  

Relativistic factor is given by  

𝛾𝛾 =  1

�1−𝑣𝑣
2

𝑐𝑐2

= �1 + 𝑝𝑝2

𝑚𝑚2𝑐𝑐2 .             (1.20)  

The electric and magnetic fields are given as  

             𝑬𝑬 =  − 1
𝑐𝑐
𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

,        (1.21)                                                                

and 𝑩𝑩 =  ∇ × 𝑨𝑨,           (1.22) 

where A is the vector potential which is related by normalized vector 

potential ɑ as 

𝒂𝒂 = 𝑒𝑒𝑨𝑨
𝑚𝑚𝑐𝑐2.             (1.23) 

1.3.2 Laser pulse propagation through plasma 

  When a laser pulse is propagated through plasma, it may go diffracted in 

the plasma, which can be prevented by relativistic self focusing.  

  The peak intensity of the laser pulse is related to the normalized vector 

potenatial as 

𝐼𝐼0 = 𝜋𝜋𝜋𝜋
2

 (𝑚𝑚𝑐𝑐2𝑎𝑎0
𝑒𝑒𝑒𝑒

)2,          (1.24) 

giving the laser parameter as   
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𝑎𝑎0
2 = 2𝑒𝑒2𝜆𝜆2𝐼𝐼0

𝜋𝜋𝑚𝑚2𝑐𝑐5  ≅ 7.32 × 10−19 𝜆𝜆2[𝜇𝜇𝜇𝜇] 𝐼𝐼0[𝑊𝑊/𝑐𝑐𝑚𝑚2],              (1.25) 

where ɑ0 is the normalized vector potential of the laser pulse. 

It is assumed that the electric field is linearly polarized. 

The peak power is 

𝑃𝑃[𝐺𝐺𝐺𝐺] ≅ 21.5 (𝑎𝑎0𝑤𝑤0
𝜆𝜆

)2,       (1.26) 

where w0 is spot size at the focus, λ is wavelength, ω = c k is the frequency 

of the laser.  

The peak laser electric field is given as 

𝐸𝐸𝐿𝐿[𝑇𝑇𝑇𝑇/𝑚𝑚] ≅  3.21 × 𝑎𝑎0
𝜆𝜆[𝜇𝜇𝜇𝜇 ]

.         (1.27) 

However, the normalized quiver momentum of the laser field is physically 

related to normalized vector potential as 

ɑ = p/mc.            (1.28) 

If ɑ0 ≥ 1, the electron motion is highly relativistic and nonlinear phenomena 

are produced in the plasma.  

When an intense laser pulse passes through a plasma, the relativistic factor 

due to quiver motion of a plasma electron is 

𝛾𝛾 ≈  �1 +  𝑎𝑎
2

2
.           (1.29) 

When the laser intensity is peaked on the axis then relativistic quiver 

motion is along the axis and guiding of the laser pulse may be possible along the 

axis. This is the relativistic self-focusing [18].  

Which can occur when P > Pc, i.e., laser power exceeds a critical power 

with  

𝑃𝑃𝑐𝑐  = 2𝑐𝑐 �𝑚𝑚𝑐𝑐2

𝑒𝑒
�

2
 � 𝜔𝜔
𝜔𝜔𝑝𝑝
�

2
       (1.30) 
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or  

Pc[GW] ≈ 17.4 (λp/λ)2,       (1.31) 

where  

λp = 2πc/ωp  

is the plasma wavelength and ωp is plasma frequency. 

  Hence, plasma electron acquired momentum and produced magnetic 

field in the plasma. In the presence of these fields, different nonlinear phenomena 

like enhancement of the ponderomotive force at the laser magnetic resonance 

[12], beam collimation, electron acceleration up to ultra high energies [29-31], 

pulse distortion due to nonlinearity induced by the relativistic mass in the 

refractive index of the plasma [39], relativistic and ponderomotive nonlinear 

effects on the stimulated scattering, decay instabilities [33, 34] and filamentation 

[40] take place.  

1.4  High-order harmonic generation 

  The nonlinear interaction of intense short laser pulse with plasma 

produces coherent radiation at multiples of the incident laser frequency. This 

generated radiation with multiples of laser frequency is known as high-order 

harmonic of incident laser frequency and the phenomenon is called as High-order 

harmonic generation (HHG) [73]. The generated radiation has the frequency 

spectrum extended up to the extreme ultraviolet region.  

  When a high intense ultra-short laser pulse interacted with underdense 

and overdense plasmas then a large number of nonlinear phenomena occur in the 

plasma. The generation of high-order harmonics is the one of the important 

nonlinear phenomena that is observed in the laser plasma. If the intensity of the 

incident laser pulse is high enough to produce relativistic effects then the 

vacuum-plasma interface experiences a large ponderomotive force and thus 

produces a large amplitude oscillation by the laser pulse on the surface and 

provides a mechanism of harmonic generation (Figure 1.2) [74-83].  



 
 
 
 

 13 
 

 

 

 

 

 

 

 

 

 

Figure 1.2: High-order harmonic generation mechanism. 

     

    High-order harmonic generation in underdense plasma is the result of 

parametric excitation produced by the interaction between intense 

electromagnetic and electrostatic plasma waves with different frequencies. When 

intense short laser pulse impinges on an overdense plasma, the harmonics of laser 

light are produced due to electron motion in the laser field at the vacuum-plasma 

interface [84] formed on the surface of the overdense plasma or solid target. 

When laser pulse is incident on the overdense plasma surface, it reflects back at 

the critical density of a graded density profile surface or at the vacuum-plasma 

interface of a sharp plasma boundary forming the oscillating layers of electron 

density. Even and odd harmonics in the reflected light are produced by these 

oscillations. The amplitude and polarization of the generated harmonics depend 

on the intensity, incident angle and polarization of the incident radiation.  

    R. Lichters et al. [85] and D. V.  Linde et al. [74, 86] proposed the 

‘moving mirror model’, according to which even and odd harmonics with 

monotonically decreasing intensities are generated when moving mirror 
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frequency and the incident laser frequency beat. Since high-order harmonic 

generation depends on the laser amplitude, the plasma density and the degree of 

inhomogeneity of plasma, the phenomenon can be explained by three different 

mechanisms [87], via, (i) oscillating mirror model [86-88], (ii) sliding mirror 

model [81, 89] and (iii) flying mirror model [90, 91]. 

1.4.1 Oscillating mirror model   
     Bulanov et al. [3, 92, 93] proposed the oscillating mirror model 

and gives a new idea that harmonics are generated from fast moving 

reflective surface. They explained the generation of harmonics as the 

result of periodic Doppler shift from oscillating reflective plasma surface 

(Figure 1.3).  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Oscillating plasma mirror scheme of high-order harmonic generation. 
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When a laser pulse is incident on a plasma surface, electrons are 

pushed back into the plasma because of the laser electric field due to the 

ponderomotive force acting upon the plasma electrons. But the ions are 

immobile on the time scale of ultra-short pulses, hence, the displaced 

electrons are pulled back because of restoring force due to the immobile 

ions and thus electrons oscillates with the frequency of the incident laser 

field. In the presence of high intensity pulses, the velocity of electrons 

approaches the speed of light leading to the relativistic effects. Thus, 

incident laser field experiences an extreme Doppler shift by the 

relativistically moving plasma surface [94] and produces frequency 

components much higher than the original one. 

1.4.2 Sliding mirror model      
             When a laser pulse is incident upon a very thin layer of 

overdense plasma, the charge separation electric field suppresses the 

electrons motion in the direction perpendicular to the plasma surface 

because of the high plasma density [89, 92] and thus the reflecting 

electron layer is negligibly displaced in the direction perpendicular to the 

plasma surface. So the electron motion is along the plasma surface that 

forms the sliding mirror. This model is called sliding mirror model. 

1.4.3 Flying mirror model  
       Bulanov et al. [93, 95] proposed the relativistic flying mirror 

model which is used in the interaction of intense laser pulse with sub-

critical concentration plasma.  

        The electron density modulation excited during the 

interaction between an intense laser pulse with underdense plasma is 

responsible for flying mirror. Thin electron shells in a plasma are moving 

with the velocity equal to the velocity of light. These high density electron 

shells partially reflect the counter propagating laser pulse coherently. This 

results in the frequency multiplication, the shortening of the pulse in the 

longitudinal direction and intensification of electromagnetic wave. 
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1.5 Introduction to Attosecond Physics 

  There has been tremendous interest in the attosecond phenomena [96] 

over the last two decades. Important among which are the measurement of the 

electric field of a laser pulse [97], the observation of the electron transport near 

the surface of a metal [98] and the time resolution of the electron tunneling 

process [99].   

Attosecond pulses were generated by the process of high-order harmonic 

generation in atomic media [100, 101] in which the harmonics emission take 

place by the electrons which tunnel away from the nucleus and then interacted 

with the nucleus while oscillating in the laser field and have high emission 

efficiency for shorter laser pulses of high intensity. Fourier analysis technique 

gives an idea of ultra-short pulse generation [102]. 

   

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Attosecond pulse generation technique.   
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Attosecond pulse generation through the high-order harmonic generation is 

possible only if the harmonics are phase synchronized. Corkum [101] proposed 

the three step model of the generation of gas harmonics. These gas harmonics 

were first used to generate the attosecond pulses during which incoming light was 

transformed into a broad spectrum with odd harmonics. The method of generation 

of attosecond pulses by high harmonics is explained in the Figure 1.4. A focused 

high intense laser pulse on a plasma is created on the solid target surface 

generating high order harmonics of incident laser frequency and an attosecond 

pulse may be separated by an appropriate filter.  

        Many experimental and theoretical studies of attosecond pulse 

generation were illustrated in the literature [4, 85, 86, 103-105]. 

1.6 Outline of the proposed work 

       This thesis presents a study of the nonlinear interaction of high intense 

ultra-short laser pulse with a magnetized plasma. At high intensities about 1019 

W/cm2 and above, the laser field is high enough to produce many nonlinear 

relativistic phenomena, e.g., wakefield exctatation, magnetic field generation, 

high-order harmonic generation and attosecond pulse generation. 

        In chapter 2, we present a  study of the nonlinear interaction of the 

linearly and circularly polarized Laguerre-Gaussian laser beams with an 

inhomogeneous parabolic plasma channel, especially, the transfer of the orbital 

angular momentum (OAM) from the photon to the plasma electrons which results 

in the excitation of the axial magnetic field (Bz) and the transverse azimuthal 

magnetic field (Bφ). Laguerre-Gaussian beams provide the basis for discussing 

the new and increasingly important concept of the orbital angular momentum of a 

photon.  We have used the Proca equation and calculated the effective mass of 

photons in plasma and worked out the coupling of angular momentum to plasma 

for the different Laguerre-Gaussian beams and their effect on magnetic field 

generation. A theory of interaction of the Laguerre-Gaussian laser beam with 

plasma is outlined and the governing equations for the transfer of orbital angular 

momentum and the effective mass of photons in plasma are derived. The analysis 
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of the generation of magnetic fields Bz and Bφ for different azimuthal angles and 

beam intensities is carried out. The results obtained are in good agreement with 

that of the PIC simulation. It has been shown that the generated magnetic field is 

not quasistatic. The magnitude of the generated magnetic field depends on the 

order of laser beam mode, beam intensity, plasma density and laser frequency.  

   In chapter 3, the analysis of short nonparaxial laser pulse in a 

magnetized plasma channel has been carried out. The electron energy gain in the 

wake of the laser pulse at different magnetic field strengths is determined. The 

effects of magnetic field on the wakefield structure, channel radius and 

accelerating length have been analyzed. It has been found that the energy gain 

increases with increasing magnetic field. It has been observed that the excited 

wake has electrostatic as well as electromagnetic nature and thus excitation of the 

wake in the plasma is nonlocal.    

     In chapter 4, we have presented a simple analytical model for 

generation of an attosecond pulse from the relativistic oscillating plasma mirror 

with E × B effect that leads to the rotation in the oscillating plasma mirror. This 

results in the spatial variation of intensity on the target giving rise to the 

deformation in the surface of the plasma mirror. Deformation in the relativistic 

plasma mirror surface in the form of an elliptical curvature is considered which 

can affect the spatial and spectral properties of the reflected beam. This in turn 

rotates the plasma mirror which could bring a change in spatio-temporal coupling 

mechanism and the Doppler shift of the reflected laser field. The effect of the 

rotation on the wavefront of the reflected laser field and the phase divergence on 

the generation of the attosecond pulse has been analyzed. The results of the 

harmonic generation and their dependence on the intensity of incident laser pulse 

are presented. 

     In chapter 5, the effect of magnetic field on the wakefield excitation 

for high intense ultra-short laser pulse in underdense magnetized plasma has been 

analyzed. The relation between the generated electric field and the externally 

applied magnetic field has been obtained. The analytical results are compared 



 
 
 
 

 19 
 
with the particle-in-cell (PIC) simulation results to give an insight into the 

wakefield evolution. 

      Conclusions and discussions are presented in chapter 6. The future 

work is also outlined in this chapter in view of the continuity of our present work.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

 20 
 

Bibliography 

[1] N. Kumar and V.K. Tripathi, Phys. Plasmas 14, 103108 (2007). 

[2] S.C. Wilks, W.L. Kruer, M. Tabak and A.B. Langdon, Phys. Rev. Lett. 

69, 1383   (1992). 

[3] S.V. Bulanov, N.M. Naumova and F. Pagoraro, Phys. Plasmas 1, 745 

(1994). 

[4] T. Baeva, S. Gordienko and A. Pukhov, Phys Rev. E 74, 046404 (2006). 

[5] S.L. Anisimov and B.S. Lukyanchuk, Phys. Usp. 45, 293 (2002). 

[6] T. Tajima and J.M. Dawson, Phys Rev. Lett. 43, 267 (1979). 

[7] X. Wang et al., Phys Rev. Lett. 84(23), 5324-5327 (2000). 

[8] M.E. Dieckmann, B. Aliasson and P.K. Shukla, Phys Rev. E 70, 036401 

(2004). 

[9] Sandeep kumar and Hitendra K. Malik, J. Plasma  Phys., 72(6), 983-

987(2006) 

[10] K. Schmid et al., Phys Rev. Lett. 102,124801 (2009). 

[11] V.B. Krasovitskii, V.G. Dorofeenko, V.I. Sotnikov and B. S. Bauer, 

 Phys. Plasmas 11(2), 724-742(2004). 

[12] A. Sharma and V.K. Tripathi, Phys. Plasmas 16, 043103 (2009). 

[13] M. Kumar and V. K. Tripathi, Phys Plasmas 17, 053103 (2010). 

[14] P. Polynkin, M. Kolesik, J.V .Moloney,   G.A. Siviloglou, D.N. 

 Christodoulides, science 324,229-232 (2009). 

[15] A. Proulx, A. Talebpour, S. Petit, S.L. Chin, Opt. Commun. 174, 

 305(2000). 

[16] C. D'Amico et al., Phys. Rev. Lett. 98, 235002 (2007). 

[17] J. Kasparian et al., Opt.Express, 16, 5757 (2008). 

[18] E. Esarey, P. Sprangle and J. Krall, IEEE J. Quant. Elect. 33(11), 1879-

 1914 (1997). 

[19] A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C.

  Joshi, V. Malka, C.B. Darrow and C. Danson, IEEE Trans.Plasma Sci.,

  24,289 (1996). 

[20] C.E. Max, J. Arons and A.B. Langdon, Phys. Rev. Lett., 33, 209 (1974). 



 
 
 
 

 21 
 

[21] M.S. Wei et al., Phys Rev. Lett. 93, 155003 (2004). 

[22] A. Pukhov et al., Phys. Plasmas 6, 2847 (1999). 

[23] G.D. Tsakiris, C. Gahn and V.K. Tripathi, Phys. Plasmas 7, 3017 (2000). 

[24] P.K. Shukla, Phys. Scr. 52, 73 (1994). 

[25] G. Berdin and J. Lundberg, Phys. Rev. E 57, 7041 (1998). 

[26] U. Wagner et al., Phys Rev. E 70, 026401 (2004). 

[27] A. Pukhov and J. Meyer-terVehn, Phys Rev. Lett. 76, 3975 (1996). 

[28] Z. Najmudin et al., Phys Rev. Lett. 87, 215004 (2001). 

[29] B. Qiao, X.T. He, S. Zhu, C.Y. Zheng, Phys. Plasmas 12,083102 (2005). 

[30] H.Y. Niu, X.T. He, B. Qiao and C.T. Zhou, Laser Part. Beam 26, 51 

 (2008). 

[31] C.Y. Zheng, X.T. He and S.P. Zhu, Phys. Plasmas 12,044505 (2005). 

[32] B. Qiao, S. Zhu, C.Y. Zheng and X.T. He, Phys. Plasmas 12, 053104 

 (2005). 

[33] C. Grebogi and C.S. Liu, Phys. Fluids 23, 1330 (1980). 

[34] H.C. Barr et al., Phys. Fluids 27, 2730 (1984). 

[35] H. Liu, X.T. He and S.G. Chen, Phys. Rev. E 69, 066409 (2004). 

[36] W.  Yu et al., Phys. Rev. E 66, 036406 (2003). 

[37] X. He et al., Phys. Rev. E 68, 056501(2003). 

[38] C.S. Liu and V.K. Tripathi, Phys. Plasmas 12, 043103 (2005). 

[39] A. Sharma and V.K. Tripathi, Phys. Plasmas 12, 093109 (2005). 

[40] R. Singh and V.K. Tripathi, Phys. Plasmas 16, 052108 (2009). 

[41] L. Allen, M.J. Padgett and M. Babiker, Prog. Opt.34, 291 (1999). 

[42] S. Franke-Arnold, L. Allen and M.J. Padgett, Laser and Photon. Rev. 2, 

 299 (2008). 

[43] J.P. Torres and L. Torner, Eds., Twisted Photons (Willey-VCH, 2011). 

[44] J.  Zhou, J. Peatross, M.M. Murnane, H.C. Kapteny and Christov, Phys. 

 Rev. Lett. 76, 752 (1996). 

[45] G. Mourou, Z. Chang, Maksimhuk, J. Nees, S.V. Bulanov, V. Y. 

 Bychenkov, T.Z. Esirkepov, N.M. Naumova, F. Pegorero and H. Ruhl, 

 Plasma Phys. Rep. 28, 12 (2002). 



 
 
 
 

 22 
 

[46] S.V. Bulanov, T.Z. Esirkepov, N.M. Naumova and  I.V. Sokolov, Phys. 

 Rev. E. 67, 016405 (2003) 

[47] I.P. Christov, M.M. Murnane and H.C. Kapteyn, Phys. Rev. Lett. 78, 

 1251-1254 (1997). 

[48] M.V. Frolov, N.L. Manakov, T.S. Sarantseva and A.F. Starace, J. Phys. 

 B: At. Mol. Opt. Phys. 42, 035601 (2009). 

[49] F. Quéré, C. Thaury, P. Monot, S. Dobosz and P. Martin, Phys. Rev. 

 Lett. 96, 125004 (2006). 

[50] K. Eidmann, T. Kawachi, A. Marcinkevicius, R. Bartlome, G.D. Tsakiris 

 and K. Witte, Phys. Rev. E 72, 036413 (2005). 

[51] H. Yang, J. Zhang, J. Zhang, L.Z. Zhao, Y.J. Li, H. Teng, Y.T. Li, Z.H. 

 Wang, Z.L. Chen, Z.Y. Wei, J.X. Ma, W. Yu and Z.M. Sheng, Phys.

  Rev. E 67, 015401 (2003). 

[52] G. Zeng, B. Shen, W. Yu and Z. Xu, Phys Plasmas 3(11), 4220-4224 

 (1996). 

[53] L. Allen and M.J. Padgett, Optics Communications 184, 67-71 (2000). 

[54] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw and J.P. Woerdman, 

 Phys. Rev. A 45(11), 8185-8189 (1992). 

[55] O. Buneman, Phys. Rev. 115, 503-17 (1959). 

[56] J.M. Dawson, Phys. Fluids 5, 445-59 (1962). 

[57] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer 

 Simulation, Mc-Graw Hill, Newyork (1985). 

[58] R.W. Hockney and J.W. Eastwood, Computer Simulation Using 

 Particles, Mc-Graw Hill, Newyork (1981). 

[59] V. Vehadi and M. Surendra, Comput. Phys. Commun. 87, 179-98 

 (1995). 

[60] J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, Comput. Phys. 

 Commun. 87, 199-211 (1995). 

[61] J. Yoo et al., Comp. Phys. Commun. 177, 93-94 (2007). 

[62] Y. Chen and S.E.Parker, Phys. Plasmas 16, 052305 (2009). 

[63] S. Morsed, T. M. Antonsen and J. P. Palastro, Phys. Plasmas 17, 063106 

 (2010). 



 
 
 
 

 23 
 

[64] N. Nasari, S. G. Bochkarev and W. Rozemus, Phys. Plasmas 17, 033107 

 (2010). 

[65] D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985). 

[66] M.D. Perry and G. Mourou, Science 264, 917 (1994). 

[67] P. Gibbon and E. Forster, Plasma Phys. Control Fusion 38, 769 (1996). 

[68] S. Backus, C.G. Durfee III, M.M. Murname and H.C. Kapteyn, Rev. Sci. 

 Instrum. 69, 1207 (1998). 

[69] Shalom Eliezer, The Interaction of High Power Lasers with Plasmas, 

 Institute of Physics Publishing, Bristol (2002).  

[70] Enrique J. Galvez, Gaussian Beams, Colgate University (2009), 

 (http://www.colgate.edu/portaldata/imagegallerywww/98c178dc-7e5b-

 4a04-b0a1-a73abf7f13d5/imagegallery/gaussian-beams.pdf). 

[71] A. T. O'Neil, I. MacVicar, L. Allen, M. J. Padgett, Phys. Rev. Lett. 88,

  053601 (2002). 

[72] N. B. Simpson, K.  Dholakia, L. Allen, M.J. Padgett, Opt. Lett. 22, 52-

 54 (1997). 

[73] C. Winterfeldt and G. Gerber, Rev. Mod. Phys.80, 117 (2008). 

[74] D.V. Linde, Applied Phys. B 68, 315-319 (1999). 

[75] S. Nuzzo, M. Zarcone, G. Ferrante and S. Basile, Laser and Particle 

 beams 18, 483-487 (2000). 

[76] P. Villoresi, P. Barbiero, L. Poletto, M. Nisoli, G. Cerullo, E. Priori, S. 

Stagira, C. De, R. Bruzzese and C. Altucci, Laser and  Particle beams 19, 

 41-45 (2001). 

[77] A. Pukhov, Rep. Prog. Phys. 65, R1-R55 (2002). 

[78] M. Nisoli, G. Sansone, S. Stagira, S.D. Silverstri, C. Vozzi, M. 

 Pascolini, L. Poletto, P. Villoresi and G. Tondello, Phys. Rev. Lett 91, 

 2139051-54 (2003). 

[79] I.B. Foldes, G. Kocsis, E. Racz, S. Szatmari and G. Veres, Laser and 

 Particle beams 21, 517-521 (2003). 

[80] T. Baeva, S. Gordienko and A. Pukhov, Phys. Rev. E 74, 046404(1-11) 

 (2006). 



 
 
 
 

 24 
 

[81] A.S. Pirozkov, S.V. Bulanov, T.Z. Esirkepov, A.S. Mori and H. Daido, 

 Phys. Plasmas 13, 013107(1-12) (2006). 

[82] R.A. Ganeev, Physics –Uspekhi. 52, 55-77 (2009). 

[83] U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445-479 (2009). 

[84] B. Dromey, M. Zepf, A. Gopal, K.Lancaster, M.S. Wei, K. Krushelnick, 

 M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C.

  Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch and P. Norreys, 

 Nature Phys. 2, 456 (2006). 

[85] R. Lichters, J. Meyer-ter-vehn and A. Pukhov, Phys. Plasmas 3, 3425-

 3437 (1996). 

[86] D. Von der Linde and K. Rzazewski, Applied Phys. B 63, 499 (1996). 

[87] Vinita Jain, An analytical and numerical investigation of generation of 

high order optical Harmonics as a result of the interaction of intense laser 

pulses with solid surfaces/gaseous medium (Doctoral Thesis), University 

of Kota, Kota, India (2014). 

[88] G.D. Tsakiris, K. Eidmann, J. Meyer-ter-vehn and F. Krausz, New J.

  Phys. 8, 19 (2006). 

[89] A.S. Pirozhkov, S.V. Bulanov, T.Z. Esirkepov, M. Mori, A. Sagisaka 

 and H. Daido, Phys. Rev. Lett. A 349, 256-263 (2006). 

[90] T.Z. Esirkepov, S.V. Bulanov, M. Kando, A.S. Pirozhkhov and A.G.

  Zhidkov, Proc. of Spie vol. 7359, 735909-1-735909-11 (2009). 

[91] S.V. Bulanov, T.Z. Esirkepov, M. Kando, J.K. Koga, A.S. Pirozhkov,

  N.N. Rosanov and A.G. Zhidkov, AIP Conf. 1032, 221 (2011). 

[92] V.A. Vshivkov, N.M. Naumova, F. Pegarero and S.V. Bulanov, Phys.

  Plasmas 5, 2727-2741 (1998). 

[93] S.V. Bulanov, T.Z. Esirkepov and T. Tajima, Phys. Rev. Lett. 91, 

 085001 (2003). 

[94] S. Gordienko, A. Pukhov, O. Shorokhov and T. Baeva, Phys. Rev. Lett. 

 93, 115002 (2004). 

[95] S.V. Bulanov, I.N. Inovenkov, V.I. Kirsanov, N.M. Naumova and A.S. 

 Sakharov, Phys. Fluids B 4, 1935-1942 (1992). 



 
 
 
 

 25 
 

[96] A.D. Bandrauk, F. Krausz and A.F. Starace, New J. Phys. 10, 025004

  (2008). 

[97] E. Goulielmakis, M. Uiberackar, R. Kienberger, A. Baltuska, V. 

 Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. 

 Heinzmann, M. Drescher and F. Krausz, Science 305, 1267 (2004). 

[98] A.L. Cavalieri, N. Müllar, T. Uphues, V.S. Yakovlev, A. Baltuska, B. 

 Horvath, B. Schmidt, L. Blumel, R. Hozwarth, S. Hendel, M. Drescher, 

 U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz and U. 

  Heizmann, Nature 449, 1029 (2007). 

[99] M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlov, 

 M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M.

  Lezius, K.L. Kompa, H.G. Mullar, M.J.J. Vrakking, S. Hendel, U. 

 Kleineberg, U. Heinzmann, M. Drescher and F. Krausz, Nature 446, 627 

 (2007). 

[100] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier and P.B. 

  Corkum, Phys. Rev. A 49, 2117 (1994). 

[101] P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993). 

[102] T.W. Hansch, Opt. Commun. 80, 71 (1990). 

[103] S. Kohlweyer, G.D. Tsakiris, C.G. Wahlstrom, C. Tillman and L. 

  Mercer, Opt. Commun. 117, 431 (1995). 

[104] P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. 

  Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, 

  F.N. Walsh, J.S. Wark and D.A.E., Phys. Rev. Lett. 76, 1832 (1996). 

[105] M. Zepf, G.D. Tsakiris, G. Pretzler, I. Watts, D.M. Chambers, P.A.

   Norreys, U. Andiel, A.E. Dangor, K. Eidmann, C. Gahn, A.  

   Machacek, J.S. Wark and K. Witte, Phys. Rev. E 58, R5253  

  (1998).  

 



 
 
 
 

 26 
 

Chapter 2 

Nonlinear interaction of Laguerre-Gaussian laser pulses 

with an inhomogeneous plasma 

2.1   Introduction 
         In this chapter, we analyze the nonlinear interaction of Laguerre-

Gaussian laser pulse with an inhomogeneous parabolic plasma channel. The 

nonlinearity depends upon the beam and plasma parameters. The Chirped Pulse 

Amplification (CPA) technology has made it possible to have the ultra-intense 

(≈1023 W/cm2) and ultra-short (subpicosecond duration) laser pulses, the 

nonlinear interaction of such pulses with plasma gives rise to several new 

phenomena [28, 106-114] which have not encountered so far in classical physics.   

In fact, it has led to a new field of physics, known as high intensity particle 

physics.  Apart from several others, the generation of quasistatic magnetic fields 

[115-121] has drawn tremendous interest as the field could have a strong 

influence on the overall plasma dynamics.  The generation of axial magnetic 

field due to the various phenomena has already been reported by many [122, 

123]. 

  The numerical simulations carried by S.C. Wilks et al. [2] predict 

extremely high self generated magnetic fields ( ≈ 250 MG). These immense fields 

of such high strength cannot be properly explained by the existing theories. 

Sudan [124] suggested that the spatial gradient and the non-stationary character 

of the ponderomotive force may lie in the origin of such strong magnetic fields. 

Tripathi and Liu [125] have reported a non-relativistic two dimensional treatment 

of self-generated magnetic field in an underdense inhomogeneous plasma. Sheng 

and Meyer-ter-Vehn [126] derived an expression for the magnetic field of the 

order of magnitude ~100 MG in an overdense plasma. Gorbunov and 

Ramazashvili [127] investigated the magnetic field generated in a homogeneous 

plasma due to interaction of a circularly polarized short laser pulse. Haines [128] 

has reported the magnetic field of tens of MG due to an ultra-intense ultra-short 
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circularly polarized laser pulse. The phenomenon becomes more important, 

particularly when it is very relevant to hybrid-inertial confinement fusion [129]. 

  In general, the laser beams are circularly polarized or rotational 

symmetric about the beam axis. The wave vectors and the angular momentum are 

directed along the axis. However, any distortion in the rotational symmetry may 

produce helical wavefronts and gain an extrinsic orbital angular momentum in 

addition to the spin angular momentum. Thus, the photon beam possesses both 

the spin and orbital angular momentum due to their polarization and angular 

phase structure respectively.  

  The helical wavefronts can be represented in a basis set of 

orthogonal Laguerre-Gaussian mode (LGp
|Ɩ|), where |Ɩ| and p refer to the azimuthal 

and radial modes of the beam respectively. A well defined state of an orbital 

angular momentum (OAM) is associated with each of the Laguerre-Gaussian 

(LG) mode [54]. In the LG laser beam, the equation for the radial electric field is 

proportional to the product of the Gaussian function and associated Laguerre 

polynomial (Lp
|Ɩ|). When |Ɩ| = p = 0, the beam is Gaussian. When |Ɩ| is greater than 

zero, the electric field has an azimuthal phase change of 2π |Ɩ|. The beam not only 

exerts longitudinal force when it impinges on any dielectric medium but also 

exerts a transverse force in the radial and azimuthal directions. The azimuthal 

force causes a torque on the dielectric (plasma) with a corresponding transfer of 

the angular momentum from beam to the dielectric (plasma electrons). The 

paraxial photon beam can appropriately be described by a linear superposition of 

LG functions providing a natural orthonormal basis for the beam representation.  

  When a laser pulse impinges on the plasma, it produces an 

electron current and thus generates the magnetic field [130, 131]. Laser photon 

carries momentum in the direction of propagation regardless of their polarization. 

It is believed that finite contribution of the orbital angular momentum in laser 

plasma interaction leads to strong rotational motion to the electrons. The 

rotational motion of the electrons constitutes a nonlinear current in axial and 

azimuthal directions and results in the excitation of magnetic fields in the 

respective directions. The linearly polarized LG beam can also generate the 
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vorticity in plasma same as the circularly polarized laser beam leads to the 

generation of magnetic fields.  

  Nonlinear interaction of higher order Gaussian beams and their 

consequences in terms of transfer of the orbital angular momentum to plasma and 

excitation of axial magnetic field (Bz) and transverse azimuthal magnetic field 

(Bφ) have been analyzed in this chapter. Laguerre-Gaussian beams provide the 

basis for discussing the new and increasingly important concept of the transfer of 

orbital angular momentum of photon. We have used the Proca equation [132] and 

calculated the effective mass of photons in plasma. The coupling of angular 

momentum to plasma for the different Laguerre-Gaussian beams and their effect 

on the magnetic field generation is analyzed. The electric and magnetic fields 

components are computed in terms of different LG potential mode. It is shown 

that the generated magnetic field is not quasistatic and its magnitude depends on 

the order of laser beam mode, beam intensity, plasma density and laser 

frequency. In the present treatment, both the longitudinal and the transverse 

plasmon mode have been considered for the transfer of orbital angular 

momentum whereas in the earlier models [133] only the longitudinal mode was 

taken into account. 

  This chapter is organized as follows. In section 2.2, an analytical 

treatment of interaction of the circularly polarized Laguerre-Gaussian laser beam 

with plasma is outlined. In section 2.3, the governing equations for the transfer of 

orbital angular momentum and effective mass of photons in plasma are derived. 

We also present the essential formalism for the generation of magnetic fields Bz 

and Bφ for different azimuthal angles (φ) and beam intensities (I). In section 2.4, 

the results are analyzed numerically and compared with the results of 2D particle-

in-cell (PIC) simulation of the Laguerre-Gaussian mode of laser beam. It is 

concluded that the excitations of Bz and Bφ are possible with both the linearly 

polarized and the circularly polarized laser beam. Summary of results are given in 

section 2.5. 
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2.2  Field structure of a Laguerre-Gaussian pulse in an 

inhomogeneous plasma 
The magnetic vector potential [207] for a circularly polarized Laguerre-

Gaussian laser pulse is written as  

𝑨𝑨(𝑟𝑟,𝜑𝜑, 𝑧𝑧, 𝑡𝑡) =  ê𝑟𝑟± 𝜄𝜄 ê𝜑𝜑
√2

  𝐴𝐴𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑, 𝑧𝑧) 𝑒𝑒−𝑖𝑖�𝜔𝜔𝜔𝜔  −∫ 𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧
0 �,                 (2.1) 

where Ap|Ɩ|(r, φ, z) is a potential function for LG mode, êr and êφ are the unit 

vectors in radial and azimuthal directions, ± refers to left circularly polarized 

(LCP) and right circularly polarized (RCP) laser beams respectively. 

The wave vector k(z) [108] of the laser pulse is  

𝑘𝑘(𝑧𝑧) =  ��𝜔𝜔
2

𝑐𝑐2 ��1 −  �
𝜔𝜔𝑝𝑝0

2

𝜔𝜔2 � �1 + 𝛿𝛿𝛿𝛿 (𝑟𝑟 ,𝜑𝜑 ,𝑧𝑧)
𝑛𝑛0

× 𝑟𝑟2

𝑟𝑟0
2�� , 

 where ω is the frequency of the laser beam, ωpo = √4πn0e2/γm is the unperturbed 

plasma frequency, δn(r,φ,z) is perturbation in the plasma density, γ = √(1+ɑ2) is 

the relativistic factor, ɑ = eA/mc2 is the normalized vector potential.  

In terms of vector potential A, the magnetic and electric fields are given by 

𝑩𝑩 = (𝛻𝛻 × 𝑨𝑨),         (2.2) 

𝑬𝑬 =  − 𝑖𝑖𝑖𝑖
𝑐𝑐
�𝑨𝑨 + � 1

𝑘𝑘2�𝛻𝛻(𝛻𝛻 ·  𝑨𝑨)�.       (2.3) 

The normalized potential function 𝑎𝑎 has the appropriate form as 

𝑎𝑎 =  𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑) 𝑤𝑤0
𝑤𝑤(𝑧𝑧) 𝑒𝑒− 𝑟𝑟2

𝑤𝑤 (𝑧𝑧)2  𝑒𝑒−𝑖𝑖(
𝑘𝑘(𝑧𝑧)𝑟𝑟2

2𝑅𝑅(𝑧𝑧) ).          (2.4) 

In equation (2.4), 𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑) is the transverse laser profile normalized to peak 

field ɑ0 and is given as 

𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑) =   𝑎𝑎0,𝑝𝑝|𝑙𝑙| (−1)|𝑙𝑙|    � 𝑟𝑟√2
𝑤𝑤(𝑧𝑧)�

|𝑙𝑙|
 𝐿𝐿𝑝𝑝

|𝑙𝑙| � 2𝑟𝑟2

𝑤𝑤(𝑧𝑧)2�   𝑒𝑒𝑖𝑖{(2𝑝𝑝+|𝑙𝑙|+1)𝜓𝜓+|𝑙𝑙|𝜑𝜑}, (2.5) 
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where 𝑎𝑎0,𝑝𝑝|𝑙𝑙| is the amplitude coefficient, R(z) is the radius of curvature of the 

wavefront, w(z) is the radius at which the Gaussian term falls 1/e of its axis 

value, (2p+|Ɩ|+1)ψ is Gouy phase, p and |Ɩ| are the radial and azimuthal index of 

the LG mode respectively, r is the radius of beam, φ is the azimuthal angle and 

Lp
|Ɩ|(2r2/w2(z)) is the generalized Laguerre polynomial. 

 The approximate description of 𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑, 𝑧𝑧) given in equation (2.4) is 

valid in the paraxial approximation r2 << z2. Also, 𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑, 𝑧𝑧) is assumed to 

vary slowly with z in comparison with the phase factor exp(−i(ωt−∫kdz)), that is 

|∂/∂z ɑp|Ɩ|(r, φ, z)| << |kɑp|Ɩ|(r, φ, z)|.  

Normalizing the amplitude ɑp|Ɩ|  

∫ ∫ �𝑎𝑎𝑝𝑝|𝑙𝑙|(𝑟𝑟,𝜑𝜑)�
22𝜋𝜋

𝑜𝑜 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑∞
𝑜𝑜   =  1.      (2.6) 

Using the normalization condition, the value of the amplitude coefficient is 

obtained as [134] 

ɑ0,𝑝𝑝|𝑙𝑙| =  𝑎𝑎0

� 1 + 𝛿𝛿0|𝑙𝑙|
��(𝑝𝑝+|𝑙𝑙|)!

4𝜋𝜋  𝑝𝑝!
�,       (2.7) 

where δ0|Ɩ| is Kronecker delta function such that δ0|Ɩ| = 1 for |Ɩ| = 0 and δ0|Ɩ| = 0 for 

|Ɩ| ≠ 0.  

Here, ɑp|Ɩ|(r,φ) = ɑ satisfies the following equation in plasma channel of the form 

n(r)  =  n0 �1 + ∆𝑛𝑛(𝑟𝑟 ,𝜑𝜑 ,𝑧𝑧)
𝑛𝑛0

× 𝑟𝑟2

𝑟𝑟0
2�, 

�𝜵𝜵⊥2 −  2𝜄𝜄𝜄𝜄(𝑧𝑧) 𝜕𝜕
𝜕𝜕𝜕𝜕

– 𝜔𝜔𝑝𝑝
2

𝑐𝑐2 � ɑ = 0 ,                   (2.8) 

where we assume that ∂ 2ɑ/∂z2 << 2ιk(z) ∂ɑ/∂z and 2ι∂2k/∂z2 and ɑp|Ɩ|(r, φ, z) = ɑ, 

and ωp
2 = ωp0

2(1+δ(r,φ,z)r2/r0
2), here δ(r, φ, z) = Δn(r, φ, z)/n0 is the perturbation 

in the plasma at a distance r from the laser beam axis, r0 is the channel radius and 

n0 is the unperturbed density of the plasma.  

The dispersion relation for the laser beam is 
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𝑐𝑐2𝑘𝑘2(𝑧𝑧) =  𝜔𝜔2 – 𝜔𝜔𝑝𝑝0
2 �1 + 𝛿𝛿(𝑟𝑟 ,𝜑𝜑 ,𝑧𝑧)𝑟𝑟2

𝑟𝑟0
2 �.       (2.9) 

The magnetic and electric fields can be derived with the help of equations (2.1-

2.5) and are given as 

𝑩𝑩 =  �− 𝜄𝜄𝜄𝜄𝑚𝑚𝑚𝑚𝑚𝑚 0√2
𝑒𝑒

� � 𝑤𝑤0
𝑤𝑤(𝑧𝑧)

�   𝑒𝑒–𝜄𝜄� 𝑟𝑟2

𝑤𝑤 (𝑧𝑧)2+ 𝑘𝑘𝑟𝑟2

2𝑅𝑅(𝑧𝑧)�  � 𝑟𝑟
𝑤𝑤(𝑧𝑧)�

|𝑙𝑙|
2    �� −4𝑟𝑟

𝑘𝑘𝑤𝑤(𝑧𝑧)2 𝐿𝐿|𝑙𝑙|+𝑝𝑝  
|𝑙𝑙|−1 (𝜌𝜌2) +

|𝑙𝑙|
𝑘𝑘𝑘𝑘

 𝐿𝐿𝑝𝑝
|𝑙𝑙|(𝜌𝜌2) − � 2𝑟𝑟

𝑘𝑘𝑤𝑤(𝑧𝑧)2 −
𝑟𝑟

𝑅𝑅(𝑧𝑧)  𝐿𝐿𝑝𝑝
|𝑙𝑙|(𝜌𝜌2)� −  𝑐𝑐𝑐𝑐𝑐𝑐  𝜑𝜑

𝑟𝑟𝑟𝑟
|𝑙𝑙| 𝐿𝐿𝑝𝑝

|𝑙𝑙|(𝜌𝜌2)� 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 ȇ𝑧𝑧  +

 �ȇ𝑟𝑟 ±  𝜄𝜄ȇ𝜑𝜑�
𝑟𝑟

𝑅𝑅(𝑧𝑧) 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑�  𝑒𝑒𝜄𝜄|𝑙𝑙|𝜑𝜑  2|𝑙𝑙|(−1)|𝑙𝑙| 𝑒𝑒−𝜄𝜄�𝜔𝜔𝜔𝜔  − ∫ 𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧
0 �,        (2.10) 

𝑬𝑬 =  �− 𝜄𝜄𝜄𝜄𝜄𝜄𝜄𝜄 𝑎𝑎0√2
𝑒𝑒

� � 𝑤𝑤0
𝑤𝑤(𝑧𝑧)

�  𝑒𝑒–𝜄𝜄� 𝑟𝑟2

𝑤𝑤2(𝑧𝑧)+ 𝑘𝑘𝑟𝑟2

2𝑅𝑅(𝑧𝑧)�  � 𝑟𝑟
𝑤𝑤(𝑧𝑧)�

|𝑙𝑙|
2  �( −4𝑟𝑟

𝑘𝑘𝑘𝑘 (𝑧𝑧)2  𝐿𝐿|𝑙𝑙|+𝑝𝑝
|𝑙𝑙|−1 (𝜌𝜌2) +

|𝑙𝑙|
𝑘𝑘𝑘𝑘

 𝐿𝐿𝑝𝑝
|𝑙𝑙|(𝜌𝜌2) − � 2𝑟𝑟

𝑘𝑘𝑘𝑘 (𝑧𝑧)2  − 𝑟𝑟
𝑅𝑅(𝑧𝑧)  𝐿𝐿𝑝𝑝

|𝑙𝑙|(𝜌𝜌2)� −  𝑠𝑠𝑠𝑠𝑠𝑠  𝜑𝜑
𝑟𝑟𝑟𝑟

 |𝑙𝑙|𝐿𝐿𝑝𝑝
|𝑙𝑙|(𝜌𝜌2)� 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 ȇ𝑧𝑧  +

 �ȇ𝑟𝑟 ±  𝜄𝜄ȇ𝜑𝜑�  𝑟𝑟
𝑅𝑅(𝑧𝑧)  𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑] 𝑒𝑒𝜄𝜄|𝑙𝑙|𝜑𝜑  2|𝑙𝑙| (−1)|𝑙𝑙| 𝑒𝑒−𝜄𝜄�𝜔𝜔𝜔𝜔  − ∫ 𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧

0 �,     (2.11) 

where ρ2 = 2r2/w(z)2. 

Equations (2.10) and (2.11) show that the electric field and the magnetic field of 

LG modes have longitudinal components (Ez, Bz ) along with the transverse 

components (Er, Br ) and (Eφ, Bφ ). These relations imply that when a photon 

travels through plasma, it acquires an additional component of angular 

momentum on account of acquiring mass by the photon in plasma. This can be 

understood in a semi-classical way that acquiring mass along with rotation of 

photon in LG mode is equivalent to acquiring additional angular momentum. This 

component may have significant role in various stimulated scattering processes 

and magnetic field generation. 

2.2 Orbital angular momentum transfer and magnetic field 

generation 
       Laguerre-Gaussian beams carry orbital angular momentum. This 

is different from the spin angular momentum. The amplitude of LG mode has an 
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azimuthal angular dependence of exp (±ι |Ɩ| φ)), where |Ɩ| is the azimuthal mode 

indices.  

      Analogy between the paraxial optics and quantum mechanics suggest 

that such modes are the eigenmodes of the angular momentum operator and carry 

an angular momentum of |Ɩ| ħ. Since this momentum has an azimuthal 

component, there is a finite longitudinal angular momentum of the beam along 

the direction of propagation and is proportional to ± |Ɩ|. The factor exp ±(ι|Ɩ|φ) can 

be considered responsible for the plasma vorticity imparting helicoidal motion to 

the photons.  

The interaction of a photon with a spatially structured plasma, e.g., vortex, can be 

interpreted by an additional mass (effective mass) like term that appears in Proca-

Maxwell equations. Following Anderson [135] and using the Proca equation 

((□ − c2 μγ
2/ħ2) (E + ∇Φ) = −4πen(r)/c2 ∂v/∂t 

and equation (2.8), we get the following relation for the effective mass of the 

photon in an inhomogeneous plasma for LG beam. 

𝑐𝑐2𝜇𝜇𝛾𝛾2

ℏ2  �1 + 𝒗𝒗�.𝜵𝜵𝚽𝚽
|𝐸𝐸|  �+ 4𝜋𝜋𝜋𝜋𝜋𝜋 (𝑟𝑟)𝛿𝛿𝑣̇𝑣

𝑐𝑐2|𝐸𝐸| −  4𝜋𝜋 𝒗𝒗�.□(𝜵𝜵𝚽𝚽)
|𝐸𝐸|    = 𝜔𝜔𝑝𝑝

2

𝑐𝑐2  (1 + 𝑐𝑐𝑐𝑐𝑐𝑐 (|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘)),(2.12) 

where μγ is the effective mass acquired by a photon in an inhomogeneous plasma, 

Φ(r) = Φ0 ɑp|Ɩ|(r,φ,z) e( ± i│Ɩ│φ) e-ι(ωt−kz) is the scalar potential and v̂  = v/v is unit 

velocity vector in an arbitrary direction and δv̇  is variation in the time derivative 

of the velocity. 

The effective mass of a photon may be written as 

𝜇𝜇𝛾𝛾2  =  𝐸𝐸
𝐸𝐸+𝒗𝒗�·𝜵𝜵𝜑𝜑

 �
ℏ2𝜔𝜔𝑝𝑝0

2

𝑐𝑐4  �1 + 𝛿𝛿(𝑟𝑟,𝜑𝜑, 𝑧𝑧)  𝑟𝑟2

𝑟𝑟0
2  � �1 + 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘)��   – 1

𝐸𝐸 + 𝒗𝒗�·𝜵𝜵𝜑𝜑
 

× �4𝜋𝜋ℏ2𝑒𝑒𝑒𝑒 𝑣̇𝑣𝑛𝑛0
𝑐𝑐4  �1 + 𝑛𝑛(𝑟𝑟)

𝑛𝑛0
 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘)� �.      (2.13) 

Equation (2.13) is simplified to obtain  
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𝜇𝜇𝛾𝛾2  =  𝑎𝑎

𝑎𝑎+
𝜔𝜔𝑝𝑝

2

𝜔𝜔2  
 �
ℏ2𝜔𝜔𝑝𝑝0

2

𝑐𝑐4  �1 + 𝛿𝛿(𝑟𝑟,𝜑𝜑, 𝑧𝑧)  𝑟𝑟2

𝑟𝑟0
2  � �1 + 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘)��   –  𝛿𝛿𝑎𝑎

𝑎𝑎+
𝜔𝜔𝑝𝑝

2

𝜔𝜔2  
 

× �ℏ
2𝜔𝜔𝑝𝑝

2

𝑐𝑐4  (1 + 𝑛𝑛(𝑟𝑟)
𝑛𝑛0

 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘))�.     (2.14) 

Obviously, the mass acquired by a photon in a plasma depends on the degree of 

spatial homogeneity and hence, on the plasma frequency ωp. It is further observed 

that the effective mass is less than what has been ascribed by the Proca equation. 

The term |Ɩ|φ ensures here that the orbital angular momentum changes the 

characteristic properties of a photon in a plasma and, hence, the interaction 

mechanism. 

Since 𝑎𝑎 ≫  𝛿𝛿𝛿𝛿, neglecting the second term in equation (2.14), we obtain  

𝜇𝜇𝛾𝛾2  =  𝑎𝑎

𝑎𝑎+
𝜔𝜔𝑝𝑝

2

𝜔𝜔2  
 �
ℏ2𝜔𝜔𝑝𝑝0

2

𝑐𝑐4  �1 + 𝛿𝛿(𝑟𝑟,𝜑𝜑, 𝑧𝑧)  𝑟𝑟2

𝑟𝑟0
2  � �1 + 𝑐𝑐𝑐𝑐𝑐𝑐(|𝑙𝑙|𝜑𝜑 +  𝑘𝑘𝑘𝑘)�� .   (2.15) 

A photon has spin 1 ħ and in a circularly polarized light these spins are aligned, 

so the beam of a finite radius has a spin angular momentum. Following Beth 

[136], axial and azimuthal components of the spin angular momentum density for 

the circularly polarized light can be given as 

         𝐽𝐽𝑧𝑧  =  ± 𝑟𝑟
𝜔𝜔𝜔𝜔

𝜕𝜕𝜕𝜕(𝑟𝑟 ,𝜑𝜑)
𝜕𝜕𝜕𝜕

              (2.16a) 

and  𝐽𝐽𝜑𝜑  =  ± 𝑟𝑟 sin 𝜑𝜑
𝜔𝜔𝜔𝜔

𝜕𝜕𝜕𝜕(𝑟𝑟 ,𝜑𝜑)
𝑟𝑟𝑟𝑟𝑟𝑟

.                (2.16b) 

In addition to the spin angular momentum, the photon also acquires orbital 

angular momentum (OAM). The axial and azimuthal components of the orbital 

angular momentum density in terms of the effective mass of photon are written as 

      𝐿𝐿𝑧𝑧  =  ±( |𝑙𝑙| 𝐼𝐼(𝑟𝑟 ,𝜑𝜑)
𝜔𝜔𝜔𝜔

 ∓  𝜇𝜇𝛾𝛾  𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑)            (2.17a) 

and 𝐿𝐿𝜑𝜑  =  ± 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 (|𝑙𝑙| 𝐼𝐼(𝑟𝑟 ,𝜑𝜑)
𝜔𝜔𝜔𝜔

 ∓ 𝜇𝜇𝛾𝛾  𝑟𝑟𝑟𝑟 ),             (2.17b) 

where the quantity μγ rc cos φ is the axial component of the angular momentum 

density of a photon due to its effective mass in the plasma which couples with 
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plasmon electrostatic mode to impart orbital angular momentum. The component 

of total angular momentum density M = L + J of a plasmon at relativistic 

intensities of light can be written as 

      𝑀𝑀𝑧𝑧 =  ± ( 𝑟𝑟
𝜔𝜔𝜔𝜔

𝜕𝜕𝜕𝜕(𝑟𝑟 ,𝜑𝜑)
𝜕𝜕𝜕𝜕

+ |𝑙𝑙| 𝐼𝐼
𝜔𝜔𝜔𝜔
∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 )                 (2.18a) 

and 𝑀𝑀𝜑𝜑  =  ± sin𝜑𝜑  (  1
𝜔𝜔𝜔𝜔

𝜕𝜕𝜕𝜕(𝑟𝑟 ,𝜑𝜑)
𝜕𝜕𝜕𝜕

+ |𝑙𝑙|  𝐼𝐼
𝜔𝜔𝜔𝜔
∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟 ).           (2.18b) 

In order to derive expressions for Bz and Bφ, we have assumed that the response 

time of the background ions in the plasma is much more than the plasma 

electrons. On such a time scale the ion motion may be reasonably neglected in 

comparison to the electron motion. It is also assumed that the collision frequency 

is much less than ωp.  

Using the conservation of angular momentum, the average rate of change 

of plasmon angular momentum in presence of the photon angular momentum can 

be written as  

         −𝑒𝑒 𝑟𝑟𝐸𝐸𝑧𝑧– 1
𝑛𝑛
𝑑𝑑𝑀𝑀𝜑𝜑

𝑑𝑑𝑑𝑑
= 0                (2.19a) 

and   −𝑒𝑒 𝑟𝑟𝐸𝐸𝜑𝜑– 1
𝑛𝑛
𝑑𝑑𝑀𝑀𝑧𝑧
𝑑𝑑𝑑𝑑

= 0,                  (2.19b) 

where Mz and Mφ are axial and azimuthal components of total angular 

momentum density. 

Following Haines [129], equations (2.19a) and (2.19b) can be written as 

      𝑟𝑟𝐸𝐸𝑧𝑧  =  − 𝑟𝑟𝑟𝑟
𝑒𝑒𝑒𝑒𝐿𝐿𝑧𝑧

 𝑀𝑀𝜑𝜑             (2.20a) 

and 𝑟𝑟𝐸𝐸𝜑𝜑  =  − 𝜔𝜔
𝑒𝑒𝑒𝑒

 𝑀𝑀𝑧𝑧  respectively,           (2.20b) 

where Lz is the interaction length. 

Using Faraday’s law, the axial and the azimuthal components of the electric field 

and magnetic field can be expressed as 
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       1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟𝑟𝑟𝜑𝜑�  =  − 1

𝑐𝑐
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

                        (2.21a) 

and 𝜕𝜕𝐸𝐸𝑧𝑧
𝜕𝜕𝜕𝜕

 =  1
𝑐𝑐
𝜕𝜕𝐵𝐵𝜑𝜑
𝜕𝜕𝜕𝜕

.                          (2.21b) 

Substituting equation (2.20b) in equation (2.21a), equation (2.20a) in equation 

(2.21b) and using equation (2.18), we obtain 

𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝜕𝜕

  = ± 1
𝑒𝑒𝑒𝑒

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ |𝑙𝑙|𝐼𝐼 ∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑),              (2.22) 

𝜕𝜕𝐵𝐵𝜑𝜑
𝜕𝜕𝜕𝜕

 = ∓  sin 𝜑𝜑
𝑒𝑒𝑒𝑒𝐿𝐿𝑧𝑧

𝜕𝜕
𝜕𝜕𝜕𝜕

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ |𝑙𝑙|𝐼𝐼 ∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟𝑐𝑐2 ).               (2.23) 

After integration of the equations (2.22) and (2.23), we have 

𝐵𝐵𝑧𝑧  = ± 1
𝑒𝑒𝑒𝑒𝑒𝑒

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ |𝑙𝑙|𝐼𝐼 ∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟𝑐𝑐2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑),            (2.24) 

𝐵𝐵𝜑𝜑  = ∓ sin 𝜑𝜑
𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝑧𝑧

𝜕𝜕
𝜕𝜕𝜕𝜕

( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ |𝑙𝑙|𝐼𝐼 ∓ 𝜇𝜇𝛾𝛾𝑟𝑟𝑟𝑟𝑐𝑐2 ).                       (2.25) 

To estimate Bz and Bφ, we assume ∂/∂r = 1/r and r = w0. Equation (2.24) can be 

written as 

𝐵𝐵𝑧𝑧 = � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤0

2� �(|𝑙𝑙| ± 1)𝐼𝐼 ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑�.               (2.26) 

Similarly, we have the following form of the azimuthal magnetic field 

𝐵𝐵𝜑𝜑 =  −2𝜋𝜋 sin𝜑𝜑  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝑧𝑧𝑤𝑤0

�   �(|𝑙𝑙| ± 1)𝐼𝐼 ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2�.    (2.27) 

The LG normalized potential function ɑ(r,φ) in the focal plane (z = 0) of the 

beam can be obtained from equation (2.1) and equation (2.4) and is written as 

𝑎𝑎(𝑟𝑟,𝜑𝜑) = 𝑎𝑎0

�1+𝛿𝛿0|𝑙𝑙| 
 �(𝑝𝑝+|𝑙𝑙|)!

4𝜋𝜋𝜋𝜋 !
 (−1)𝑙𝑙  �√2𝑟𝑟

𝑤𝑤0
�

|𝑙𝑙|
 𝐿𝐿𝑝𝑝

|𝑙𝑙| �2𝑟𝑟2

𝑤𝑤0
2 �  𝑒𝑒

− 𝑟𝑟
2

𝑤𝑤0
2  𝑐𝑐𝑐𝑐𝑐𝑐 (|𝑙𝑙|𝜑𝜑). (2.28) 

The laser intensity profile in the focal plane (z = 0) can be expressed as 

𝐼𝐼(𝑟𝑟,𝜑𝜑) =  𝐼𝐼0 (−1)2|𝑙𝑙| �(𝑝𝑝+|𝑙𝑙|)!
4𝜋𝜋𝜋𝜋 !

� 𝜌𝜌2|𝑙𝑙| 𝐿𝐿𝑝𝑝
|𝑙𝑙|(𝜌𝜌2 ) 𝑒𝑒−𝜌𝜌2 𝑐𝑐𝑐𝑐𝑠𝑠2(|𝑙𝑙|𝜑𝜑),   (2.29) 
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where 𝐼𝐼0  =  𝑎𝑎0

2  1
�1+ 𝛿𝛿0|𝑙𝑙|�

   is the maximum intensity of laser pulse, ρ2 = 2r2/w0
2 

and ɑ0 = eA0 /mc2 is the maximum amplitude of the laser pulse. 

2.4 2D PIC simulation results 

   The magnetic field generation due to the exchange of angular 

momentum between photons of the laser pulse and the plasma electrons depends 

on the radial and azimuthal modes. For circularly polarized Gaussian laser pulse 

|Ɩ| = 0 and p = 0. 

Using Equation (2.29), the intensity profile of Gaussian laser beam (|Ɩ| = 0, p = 0) 

can be written as 

I(r,φ) = I0 exp (−ρ2),        (2.30) 

where we have used L0
0(ρ2) = 1. This yields the following relations for Bz and Bφ 

𝐵𝐵𝑧𝑧  =  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤0

2� �𝐼𝐼0𝑒𝑒− 𝜌𝜌2  ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑  � and    (2.31) 

𝐵𝐵𝜑𝜑 =  −2𝜋𝜋 sin𝜑𝜑  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝑧𝑧𝑤𝑤0

� �𝐼𝐼0𝑒𝑒− 𝜌𝜌2 ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2�.    (2.32) 

     These results match the relativistic two dimensional (2D) PIC 

simulation [114] for the normalized vector potential ɑ (= eA/mc2) which varies 

from ɑ = 1.0 to 4.0, where A, c, e and m are vector potential, speed of light, 

charge and mass of the electron respectively. We have taken a typical set of 

parameters for a laser pulse, e. g., intensity ranging from 1.0×1018 −1.3×1019 

W/cm2, central wavelength λ = 1 μm, spot size w0 = 50 μm and pulse duration 33 

fs. We have considered the profile of the plasma density as 𝑛𝑛 = 𝑛𝑛0  �1 + 𝛥𝛥𝛥𝛥
𝑛𝑛0

𝑟𝑟2

𝑟𝑟0
2�, 

where the unperturbed plasma density is n0 ≈ 1019 cm−3, r is radial distance and r0 

is the channel radius. The dimensions of the simulation box are 400 × 200 μm2. 

The simulation box moves and scans 8000 × 400 cells with five particles per cell.         
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Figure 2.1: The laser pulse evolution in the parabolic channel for |Ɩ| = 0, p = 0 (a) 

a =1.0 (b) a = 1.5 (c) a = 2.0 and for |Ɩ| = 1, p = 0 (d) a = 1.0 (e) a = 2.0 and (f ) a 

= 3.0 for plasma density n = 1.2×1024 m−3. 

The results are shown in Figures 2.1 -2.12. It is found that the magnitudes 

of the generated magnetic fields Bφ and Bz depend on the laser mode, plasma 

density, laser frequency and the vector potential ɑ. The strength of the magnetic 

fields depends on the type of the polarization of laser field. It is observed that 

dynamics of coupling of OAM with plasma fluid depends on the effective mass 

of photons leading to the change in magnitude of generated magnetic field. 
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Figure 2.2: Axial magnetic field generation due to left circularly polarized laser 

beam (|Ɩ| = p = 0) for (a) a = 1.0 (b) a = 2.0 (c) a = 3.0 and plasma density 

n=1.2×1024 m−3. 
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Figure 2.3: Azimuthal magnetic field generation due to left circularly polarized 

laser beam (|Ɩ| = p = 0) for (a) a = 1.0 (b) a = 2.0 (c) a = 3.0 and plasma density 

n=1.2×1024 m−3. 
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Figure 2.4: Axial magnetic field generation due to left circularly polarized laser 

beam (|Ɩ| = p = 0) for a = 3 and plasma densities (a) n=1.2×1024 m−3                   

(b) n=2.24×1023 m−3 and (c) n=2.22 × 1021 m−3. 
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Figure 2.5: Azimuthal magnetic field generation due to left circularly polarized 

laser beam (|Ɩ| = p = 0) for a = 3 and plasma densities (a) n = 1.2 × 1024 m−3       

(b)   n = 2.24 × 1023 m−3 and (c) n = 2.22 × 1021 m−3. 
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Figure 2.6: Azimuthal magnetic field generation due to left circularly polarized 

laser beam (|Ɩ| = p = 0) for a = 4 and plasma densities (a) n = 1.2 × 1024 m−3            

(b) n = 2.24 × 1023 m−3 and (c) n = 2.22 × 1021 m−3. 
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Figure 2.7: Axial magnetic field generation due to left circularly polarized laser 

beam (|Ɩ| = p = 0) for a = 4 and plasma densities (a) n = 1.2 × 1024 m−3                     

(b) n = 2.24 × 1023 m−3 and (c) n = 2.22 × 1021 m−3. 
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Figure 2.8: Axial magnetic field Bz due to left circularly polarized laser beam     

(|Ɩ| = 1, p = 0) of intensities (a) I1 = I0 (b) I2 = 0.33 I0 and (c) I3 = 0.2 I0. 

 

 

 

Figure 2.9: Axial magnetic field Bz due to left circularly polarized laser beam     

(|Ɩ| = 1, p = 0) of intensity I0 and azimuthal angles (a) φ = π/6 (b) φ = π/4 and     

(c) φ = π/3. 
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Figure 2.10: Azimuthal magnetic field Bφ due to left circularly polarized laser 

beam (|Ɩ| = 1, p = 0) of intensity I0 at azimuthal angles (a) φ = π/6 (b) φ = π/4 and 

(c) φ = π/3. 

 

 

  

Figure 2.11: Axial magnetic field Bz of linearly polarized laser beam (|Ɩ| = 1, p = 

0) of intensity I0 = 1.2 × 1019 W/m−2 at azimuthal angles (a) φ = 0 (b) φ = π/6 (c) 

φ = π/4 and (d) φ = π/3. 
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Figure 2.12: Azimuthal magnetic field Bφ due to linearly polarized laser beam (|Ɩ| 

= 1, p = 0) of intensity I0 = 1.2 × 1019 W/m−2 at azimuthal angles (a) φ = 0 (b) φ = 

π/6 (c) φ = π/4 and (d) φ = π/3. 

For |Ɩ| = 1 and p = 0, the intensity profile of LG beam can be given as 

I(r,φ) = I0 ρ2 exp(−ρ2) cos2φ.       (2.33) 

Using equations (2.26), (2.27) and (2.33) relations for Bz and Bφ can be given as 

𝐵𝐵𝑧𝑧  =  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤0

2� �2I0 ρ2 e− 𝜌𝜌2 cos2 φ ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑  �,     (2.34) 

𝐵𝐵𝜑𝜑 =  −2𝜋𝜋 sin𝜑𝜑  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝑧𝑧𝑤𝑤0

�   �2I0 ρ2 e− 𝜌𝜌2 cos2 φ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2�.   (2.35) 

Figures 2.8-2.12 demonstrate the variation of Bz and Bφ as a function of r for 

different beam intensity profiles with mode index |Ɩ| = 1 and p = 0. It is found that 

the generated magnetic field increases with the laser intensity. We conclude that 

the magnitude of the generated axial and azimuthal magnetic fields change with 

the mode order of LGp
|Ɩ| and the azimuthal symmetry. 

For a linearly polarized photon beam, equation (2.34) can be rewritten as 

𝐵𝐵𝑧𝑧  =  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤0

2� �I0 ρ2 e− 𝜌𝜌2 cos2 φ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑  �.     (2.36) 
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Figure 2.11 shows the variation of Bz as a function of r for a linearly polarized 

laser beam with polynomial LG0
|1| at different phase angles (a) φ = 0 (b) φ = π/6 

(c) φ = π/4 and (d) φ = π/3. It is observed that Bz decreases on increasing φ when 

beam intensity is constant. The generated magnetic fields are strong for the 

circularly polarized laser beam than the linearly polarized beam. We further 

conclude that the inverse Faraday effect can also be observed in linearly polarized 

beams.  

Bφ of a linearly polarized laser beam can be given as  

𝐵𝐵𝜑𝜑  =  −2𝜋𝜋 sin𝜑𝜑  � 1
𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝑧𝑧𝑤𝑤0

�   �I0 ρ2 e− 𝜌𝜌2 cos2 φ ∓  𝜇𝜇𝛾𝛾𝑤𝑤0𝜔𝜔𝜔𝜔2�.   (2.37) 

Figure 2.12 shows the variation of Bφ as a function of r for a linearly polarized 

laser beam of polynomial LG0
|1| at different values of φ. It is seen that Bφ is not 

quasistatic and it decreases as φ increases for a given intensity. 

2.5 Summary 

       A detailed analysis of angular momentum transfer and magnetic 

fields generation for both the linearly and circularly polarized LG beams are 

presented at relativistic limit. It is observed that generated magnetic fields depend 

on the OAM transfer and mass correction of photon in the relativistic limit. The 

effective mass of photons becomes more significant at higher Gaussian beam 

modes and plasma densities. The generated magnetic field depends on the LG 

beam mode, laser intensity, azimuthal angle and the relativistic gamma factor. 

Further, it is observed that excitation of magnetic fields is possible for both 

linearly and circularly polarized laser beams for different azimuthal angles. The 

magnitude of generated magnetic field due to circularly polarized Laguerre-

Gaussian beam of higher modes decreases with increasing azimuthal angle and is 

greater than that of the linearly polarized beam. It is further observed that the 

magnetic fields generated due to higher Gaussian modes is not quasistatic but 

changes over some spatial distribution of plasma.  
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Chapter 3 

Analytical and numerical analysis of nonlinear 

interaction of a laser pulse with an inhomogeneous 

magnetized plasma 

3.1 Introduction 

           When a tightly focused short laser pulse propagates through a plasma 

various fundamentally important issues arise in the field of laser-plasma 

interactions [7, 12, 137-143]. Tajima and Dawson [6] have proposed a scheme of 

charged particle acceleration by plasma waves so that stable propagation of an 

intense laser pulse over long distances has been possible. The production of 

tightly focused high power laser pulses with nanosecond time duration is possible 

with the development of the chirped pulse amplification (CPA) technology. X-ray 

lasers, high-order harmonic generation, laser-plasma channeling and fast ignition 

for laser fusion are some of the applications in which these high intense laser 

pulses can be used [18, 144-150]. The laser driven particle accelerators are based 

on the single intense laser pulse propagation in a plasma. Relativistic 

modification in the refractive index gives rise to self-guiding of the laser pulses in 

the self-modulated regime [151] but these modulated pulses were highly unstable. 

In the self-guided laser wakefield acceleration (LWFA) regime [152, 153], self 

guiding of the laser pulse occurred as the laser pulse has the power above the 

critical value for self-focusing, but the self guided laser pulse propagation is 

highly unstable. The simplicity in the use of the self-guided laser wakefield 

acceleration regime [154-156] is more attractive than the use of plasma guiding 

structures. The acceleration process in the self-guided laser wakefield 

acceleration regime is significantly affected by the laser pulse evolution and the 

propagation instabilities. For example, a stable wakefield structure cannot occur 

if the laser pulse breaks into filaments [157, 158] and the characteristics of the 

electron beam such as beam spatial profile, temporal profile and energy spread 

are degraded as compared to the stable propagation of a laser beam. 
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             The optical guiding method in a plasma channel has been found to 

extend acceleration length up to a distance of many Rayleigh lengths (zR = πr0
2/λ, 

where r0 is the spot size at focus (z = 0), λ = 2πc/ω is laser wavelength and ω is 

laser frequency) for laser-based schemes for propagation of an intense laser pulse. 

Several methods for plasma channel formation are currently being proposed for 

this purpose. Some of which [159-161] include (i) production of a line focus in a 

gas by passing a long laser pulse through a lexicon resulting in a radially 

expanding hydrodynamic shock, (ii) a capillary discharge used to control the 

plasma profile and (iii) the ponderomotive force of a relativistically intense self-

guided laser pulse in a plasma are used to creates a channel in preformed plasma. 

Using these methods, high intense short laser pulses have been guided over the 

distances of the order of 20 zR to 100 zR. These experiments have shown the 

dependence of the guiding mechanism to laser intensity and plasma channel can 

be used in plasma based acceleration, fast ignition as well as the production of 

monochromatic x-ray laser. 

      Many of the research works are carried out on the problem of 

propagation of the low power and low intensity (P < Pc) laser pulses, where 

Pc[GW] ≈ 17.4 (λp/λ)2 is the critical power, λ =2πc/ω is the laser wavelength with 

frequency ω and λp= 2πc/ωp is plasma wavelength with ωp= (4πn0e2/m)1/2 the 

plasma frequency, propagated through a plasma channel with plasma density n = 

n0+∆nr2/r0
2 with the matched condition r0= Rch, under this condition  ∆n=∆nc , 

where n0 is unperturbed plasma density, Δn is density perturbation, Rch is the 

channel radius and ∆nc=1/πrer0
2 ≈ 1.13×1020/r0

2[mm] is the critical channel depth 

and re=e2/mec2 is the classical electron radius. Higher electron energies produced 

in preformed plasma channel have been studied [162-165]. 

      Another type of the low frequency mode having electrostatic and 

electromagnetic characteristics is produced in an inhomogeneous plasma 

channels. Excitation of plasma waves in a channel with a parabolic transverse 

density profile with the matched condition for Gaussian beam propagation had 

been investigated [166]. Generation of the wakefields in a plasma channel by an 

intense short laser pulse (especially hollow channels with a sharp vacuum-plasma 
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boundary) has been studied [167]. Numerical simulation carried out on the stable 

propagation of short pulses in an un-tapered channel over many Rayleigh lengths 

has shown that higher laser power  and increasing laser spot size is required to 

increase zR but this requirement is still limited to distances of a few hundred 

micrometers. Many experiments have shown that the self-guided and energetic 

electrons generated when the laser power exceeds the critical power [168-171]. 

Excitation of a damped quasi-mode is an attractive feature of the wakefield 

generation in sharp edged plasma channels. 

  It is demonstrated that a continuous frequency spectrum can be 

generated during the response of a plasma channel with a smooth density profile 

unlike a hollow channel with an infinitely sharp interface which only supports a 

single surface mode at certain frequency and a bulk plasma mode at ωp(z).  

Collisionless damping is possible in the discrete channel mode in the continuum 

of modes. 

   Paraxial approximation is used as a conventional approach for intense 

finite radius laser pulses which propagated through plasmas [18]. However, the 

paraxial approximation approach is unable to describe many nonlinear 

phenomena such as group velocity dispersion, finite pulse length effect and axial 

transport of energy within the pulse [172-176]. In addition, the transverse 

variation of the laser pulse during the propagation through plasma cannot be 

neglected. Thus, a new approach derived from the paraxial theory is strongly 

required.  

   In this chapter, the nonparaxial theory for short laser pulse propagation 

in a single mode nonuniform plasma channel including the effect of finite pulse 

length and some related nonlinear phenomena is discussed. The electron energy 

gain in the wake of the laser pulse at different magnetic field strengths is 

determined. The effects of magnetic field on the wakefield structure, channel 

radius and accelerating length [114, 177] have been analyzed. 

  This chapter is organized as follows. The laser pulse and plasma wave 

evolution equations in an inhomogeneous magnetic plasma channel with 
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parabolic density profile have been derived in section 3.2. In the next section, the 

dynamics of the laser wakefield acceleration has been analyzed. In section 3.4, 

we have examined the effects of external magnetic field on dephasing length of 

an accelerated particle in the wake and the energy gain by the electrons. The 

effect of the external magnetic field on the wakefield excitation has been studied 

and the same has been compared with the results of the two dimensional particle-

in-cell simulation in section 3.5. The conclusions are presented in section 3.6. 

3.2. Evolution of a laser pulse and a plasma wave   

 The nonlinear propagation of a circularly polarized Gaussian laser pulse 

with the intensity I ≈ 1.3×1019 Wcm-2, central wavelength ≈ 1.0 μm and pulse 

duration ≈ 33 fs is considered. The laser pulse propagates through a preformed 

inhomogeneous plasma channel generated by an ultra-relativistic laser pulse (ɑ0  ≈ 

3). The length of the propagated laser pulse is comparable to the plasma 

wavelength λp. A plasma channel with a positive gradient in plasma density that 

has inhomogeneous underdense plasma with density of n0 ≈ 1019 cm-3 on the axis 

is analyzed. The externally applied magnetic field B0 is taken along the pulse 

propagation direction, i. e., along z-axis. 

The electric component along the transverse direction of a circularly 

polarized tightly focused laser pulse in an inhomogeneous plasma channel is 

assumed as [114] 

𝑬𝑬⊥(𝑟𝑟, 𝑡𝑡) =  1
�2𝜂𝜂(𝑟𝑟 ,𝑧𝑧)

 �ê𝑥𝑥 ± 𝑖𝑖ê𝑦𝑦�𝐸𝐸0�𝑟𝑟, 𝑧𝑧 − 𝑣𝑣𝑔𝑔(𝑧𝑧)𝑡𝑡�  �𝑟𝑟0
𝑟𝑟𝑠𝑠
� 𝑒𝑒

�
𝑡𝑡−∫ 𝑑𝑑𝑑𝑑

𝑣𝑣𝑔𝑔 (𝑧𝑧)
𝜏𝜏𝐿𝐿

�

2

 

×

𝑒𝑒
− 𝑟𝑟

2

𝑅𝑅𝑐𝑐ℎ
2  

  𝑒𝑒−𝑖𝑖�𝜔𝜔𝜔𝜔−∫ 𝑘𝑘0(𝑧𝑧)𝑑𝑑𝑑𝑑�,                                                   (3.1) 

where êx and êy are the orthogonal unit vectors along the x-axis and y-axis 

respectively, η(r,z) is the refractive index, k0(z) is spatially varying wave number 

and Rch is the channel radius. The spot size rs of the laser pulse at z for the 

proposed conditions is taken as rs = r0 (1+z2/zR
2). For short laser pulse propagated 

through plasma channel (Lp < λp), drs/dz = 0 and rs = r0+δr at z = 0 with δr0
2/r0

2 
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˂˂ 1 is used [178]. For convenience, choose independent variables z and τ in 

place of z and t considering the relation τ = t-∫ dz΄/vg(z΄) .  Usin g  vg(z) (t-∫ 

dz΄/vg(z΄)) = ξ   and pulse length Lp = cτL , where τL is pulse duration, the 

transverse electric field  in terms of independent variables turns out to be   

𝑬𝑬⊥(𝑟𝑟, 𝑡𝑡) =  1
�2𝜂𝜂(𝑟𝑟 ,𝑧𝑧)

 �ê𝑥𝑥 ± 𝑖𝑖ê𝑦𝑦�𝐸𝐸0(𝑟𝑟, 𝜉𝜉) 𝑟𝑟0(𝜉𝜉=0)
𝑟𝑟𝑠𝑠(𝜉𝜉)

𝑒𝑒
−ξ2

𝐿𝐿𝑝𝑝
2  
𝑒𝑒
− 𝑟𝑟

2

𝑅𝑅𝑐𝑐ℎ
2  

  𝑒𝑒−𝑖𝑖�𝜔𝜔𝜔𝜔−∫ 𝑘𝑘0(𝑧𝑧)𝑑𝑑𝑑𝑑�.                                                                            

                   (3.2) 

The radial component of the normalized laser vector field of the circularly 

polarized laser pulse has the form 

𝑎𝑎 =  𝑎𝑎0(𝑟𝑟, ξ) 𝑟𝑟0
𝑟𝑟𝑠𝑠
𝑒𝑒
−ξ2

𝐿𝐿𝑝𝑝
2  
𝑒𝑒
− 𝑟𝑟

2

𝑅𝑅𝑐𝑐ℎ
2  

  𝑒𝑒−𝑖𝑖�𝜔𝜔𝜔𝜔−∫ 𝑘𝑘0(𝑧𝑧)𝑑𝑑𝑑𝑑�,  

where ɑ is the transverse normalized laser vector field has the form of  

ɑ⊥(eA⊥/mc2). The dispersion relation, which relates the frequency and the wave 

vector k0 for a left-hand circularly polarized electromagnetic wave propagating 

along z-direction, is given as [24] 

𝜔𝜔2  =  𝑘𝑘0
2(𝑧𝑧)𝑐𝑐2  + 𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝜔𝜔
𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐

,                                                                     (3.3) 

here relativistic factor γ(z) = (1 + ɑ0
2/η(z) )1/2, cyclotron frequency ωc = eB0/mc 

and propagation constant k0(z) = η(z)ω/c.  

The dispersion relation for a very high frequency electromagnetic wave can be 

written as 

𝜔𝜔𝑝𝑝2(𝑧𝑧) =  ( 𝜔𝜔
3

2𝜔𝜔𝑐𝑐
) (1 − 𝜂𝜂2(𝑧𝑧)) �1 + 𝑎𝑎0

2

𝜂𝜂(𝑧𝑧)�.                           (3.4) 

Since the radial shear of the plasma density does not much contribute in the 

excitation of the plasma modes than for the propagation of the left circularly 

polarized electric field in a wide plasma channel η(z) ≈ η(r,z) is considered. The 

complex field amplitude ɑ0(r,ξ) can be taken equal to the radial amplitude ɑ0(r) or 

the longitudinal normalized field amplitude ɑ0(z) for a very short laser pulse. 
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Considering the normalized field strength ɑ0 (=eE0/mcω), the refractive index 

[18] is obtained as  

𝜂𝜂(𝑟𝑟, 𝑧𝑧) ≈  1 − 𝜔𝜔𝑝𝑝
2

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) �1 + ∆𝑛𝑛(𝑟𝑟 ,𝑧𝑧)
𝑛𝑛0

+ 𝛿𝛿𝛿𝛿 (𝑟𝑟 ,𝑧𝑧)
𝑛𝑛0

− 𝑎𝑎0
2

2
− 4𝑐𝑐2

𝑟𝑟𝑠𝑠2𝜔𝜔2�,         (3.5) 

where ωp is the plasma frequency at z = 0, γ(z) = (1 + a0
2/η(z) )1/2,  ∆n(r,z) is the 

density variation due to pre-existing structure of the plasma and δn(r, z) is the 

change in plasma density due to wake response.  

Hence, the wave equation for the normalized vector potential ɑ(r, z, t) of the laser 

field is [18] 

(∇⊥𝟐𝟐 − 𝑘𝑘0
2(𝑧𝑧) + 𝜔𝜔0

2

𝑐𝑐2  +  𝑖𝑖 𝜕𝜕𝑘𝑘0
𝜕𝜕𝜕𝜕

  +  2𝑖𝑖𝑘𝑘0(𝑧𝑧) 𝜕𝜕
𝜕𝜕𝜕𝜕

  +  2𝑖𝑖 𝜔𝜔
𝑐𝑐2  𝜕𝜕

𝜕𝜕𝜕𝜕
 +

𝜕𝜕2

𝜕𝜕𝑧𝑧2   – 1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2) 𝒂𝒂(𝑟𝑟, 𝜏𝜏, 𝑧𝑧)  =  𝜔𝜔𝑝𝑝
2𝜔𝜔𝑐𝑐

2

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)𝑐𝑐2  (1 + 𝑟𝑟2

𝑅𝑅𝑐𝑐ℎ
2  – 𝑟𝑟2

𝑟𝑟𝑠𝑠2
 + 𝛿𝛿𝛿𝛿 (𝑧𝑧)

𝑛𝑛0
 − |𝑎𝑎|2

4
) 𝒂𝒂(𝑟𝑟, 𝜏𝜏, 𝑧𝑧).  

           (3.6) 

The density profile for a nonuniform plasma is  

𝑛𝑛(𝑟𝑟 ,𝑧𝑧)
𝜔𝜔2  = 𝑛𝑛(𝑧𝑧)

𝜔𝜔2  (1 + 𝑟𝑟2

𝑅𝑅𝑐𝑐ℎ
2  – 𝑟𝑟2

𝑟𝑟𝑠𝑠2
 ).                                           (3.7) 

It is convenient to change the independent variables from z, t to z, τ in equation 

(3.6) by considering 𝜏𝜏 =  𝑡𝑡 − ∫  𝑑𝑑𝑑𝑑΄
𝑣𝑣𝑔𝑔(𝑧𝑧΄)

 .   

Using new variables, 𝜕𝜕
𝜕𝜕𝜕𝜕
→ 𝜕𝜕

𝜕𝜕𝜕𝜕
− 1

𝑣𝑣𝑔𝑔(𝑧𝑧)
𝜕𝜕
𝜕𝜕𝜕𝜕

  and 𝜕𝜕
𝜕𝜕𝜕𝜕
→ 𝜕𝜕

𝜕𝜕𝜕𝜕
, equation (3.6) becomes 

[𝛻𝛻⊥𝟐𝟐 −
𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝜔𝜔𝑐𝑐
2

𝜔𝜔  𝑐𝑐2  (𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) + 4
𝑟𝑟𝑠𝑠2

+ �𝜔𝜔
2

𝑐𝑐2 − 𝑘𝑘0
2(𝑧𝑧) − 4

𝑟𝑟𝑠𝑠2
� +

2𝑖𝑖𝑘𝑘0(𝑧𝑧) �1 + 𝑖𝑖
𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔(𝑧𝑧)

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝜕𝜕

  +  2𝑖𝑖 �𝜔𝜔
𝑐𝑐
− 𝑘𝑘0(𝑧𝑧)� 1

𝑣𝑣𝑔𝑔(𝑧𝑧)
𝜕𝜕
𝜕𝜕𝜕𝜕

  + 𝑖𝑖 𝜕𝜕𝑘𝑘0
𝜕𝜕𝜕𝜕

 �1 −

𝑖𝑖
𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔(𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕�+ �1−𝛽𝛽𝑔𝑔2�
𝑣𝑣𝑔𝑔2(𝑧𝑧)

𝜕𝜕2

𝜕𝜕𝜏𝜏2   + 𝜕𝜕2

𝜕𝜕𝑧𝑧2  – 𝜔𝜔𝑝𝑝
2𝜔𝜔𝑐𝑐

2

𝜔𝜔𝑐𝑐2(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) 
 (𝛿𝛿𝛿𝛿 (𝑧𝑧)

𝑛𝑛0
 −  𝑎𝑎

2

4
)]𝒂𝒂(𝑟𝑟, 𝜏𝜏, 𝑧𝑧)  = 0.         

           (3.8) 

In order to find solutions, an algebraic transformation from the laboratory frame 

variables (z, t) to the variables (ξ, τ), where 𝜉𝜉 = 𝑧𝑧 − ∫  𝑑𝑑𝑑𝑑΄
𝑣𝑣𝑔𝑔−1(𝑡𝑡΄)

  and τ = t is 
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performed using transformation rules 𝜕𝜕
𝜕𝜕𝜕𝜕
→ 𝜕𝜕

𝜕𝜕𝜕𝜕
 and 𝜕𝜕

𝜕𝜕𝜕𝜕
→ 𝜕𝜕

𝜕𝜕𝜕𝜕
 − � 1

𝑣𝑣𝑔𝑔−1(𝑧𝑧)�
𝜕𝜕
𝜕𝜕𝜕𝜕

 in the 

equation (3.8), the equation becomes   

�𝛻𝛻⊥𝟐𝟐 + 4
𝑟𝑟𝑠𝑠2

+ �𝜔𝜔
2

𝑐𝑐2 − 𝑘𝑘0
2(𝑧𝑧) − 𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝜔𝜔𝑐𝑐
2

𝜔𝜔  𝑐𝑐2(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) −
4
𝑟𝑟𝑠𝑠2
� + 2𝑖𝑖𝑘𝑘0(𝑧𝑧) �1 + 𝑖𝑖

𝑘𝑘0(𝑧𝑧)
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝜕𝜕

   +

2𝑖𝑖 �𝜔𝜔
𝑐𝑐
− 𝑘𝑘0(𝑧𝑧)� 𝜕𝜕

𝜕𝜕𝜕𝜕
  +  𝑖𝑖 𝜕𝜕𝑘𝑘0

𝜕𝜕𝜕𝜕
  �1 − 𝑖𝑖

𝑘𝑘0(𝑧𝑧)
𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝛾𝛾𝑔𝑔2

𝜕𝜕2

𝜕𝜕𝜉𝜉2   +

𝜕𝜕2

𝜕𝜕𝑧𝑧2  – 𝜔𝜔𝑝𝑝
2𝜔𝜔𝑐𝑐

2

𝜔𝜔𝑐𝑐2(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) �𝛿𝛿𝛿𝛿 (𝑧𝑧)
𝑛𝑛0

− 𝑎𝑎2

4
�� 𝒂𝒂(𝑟𝑟, 𝜉𝜉, 𝑧𝑧) = 0 ,       (3.9) 

where 𝛾𝛾𝑔𝑔(𝑧𝑧) = �1 − 𝛽𝛽𝑔𝑔2(𝑧𝑧)�
1
2   and βg(z) = vg(z)/c. In absence of the Raman 

backscattering, i.e., in the limit of 1/kp ˂˂ r0 ˂˂ Rch, the wave number k0(z) is 

given by 

𝑘𝑘0(𝑧𝑧) = 1
𝑐𝑐

 �𝜔𝜔2 − 𝜔𝜔𝑝𝑝
2 (𝑧𝑧)𝜔𝜔

𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐
 – 4𝑐𝑐2

𝑟𝑟𝑠𝑠2
�

1
2
 .                             (3.10) 

and the group velocity is given as 

𝑣𝑣𝑔𝑔(𝑧𝑧)  =  𝑐𝑐 ∫ 𝑘𝑘0(𝑧𝑧)𝑑𝑑𝑑𝑑 =  ∫ �𝜔𝜔2 − 𝜔𝜔𝑝𝑝
2 (𝑧𝑧)𝜔𝜔

𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐
 – 4𝑐𝑐2

𝑟𝑟𝑠𝑠2
�

1
2
𝑑𝑑𝑑𝑑.       (3.11) 

The operator ∇⊥ in equation (3.8) for a short laser pulse propagation in a parabolic 

plasma channel can be represented as ∇⊥ ≈ 1/rs(r), where rs(r) = r0+∂r in the 

mismatched condition and ∂r is the transverse variation due to the spot oscillation 

in transverse direction in the relativistic limit. These oscillations are responsible 

for modification in the channel width at the given spatial coordinates. Hence, the 

surface waves and the wakefield generated in the plasma will be different.  

Assumed ∂/∂ξ ≈ 1/Lp, ∂/∂z ≈ 1/zR and neglect the terms of ∂2ɑ/∂z2, ∂2ɑ/∂ξ∂z and 

cτ/λ, equation (3.9) becomes 

[𝛻𝛻⊥𝟐𝟐 + 4
𝑟𝑟𝑠𝑠2
− 𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝜔𝜔
𝑐𝑐2(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) �

𝑟𝑟2

𝑅𝑅𝑐𝑐ℎ
2 − 𝑟𝑟2

𝑟𝑟𝑠𝑠2
− 𝑎𝑎2

4
 � + 𝛾𝛾𝑔𝑔2(𝑧𝑧) 1

𝐿𝐿𝑝𝑝2
  + 1

𝑧𝑧𝑅𝑅
2  +  2𝑖𝑖𝑘𝑘0(𝑧𝑧) 𝜕𝜕

𝜕𝜕𝜕𝜕
   +

𝑟𝑟0
𝑟𝑟𝑠𝑠(𝜉𝜉)  𝑖𝑖 𝜕𝜕𝑘𝑘0(𝑧𝑧)

𝜕𝜕𝜕𝜕
 ] 𝑎𝑎(𝑟𝑟, 𝜉𝜉, 𝑧𝑧)  = 0.                                                   (3.12) 

The channel radius for a unscratched laser pulse with a Gaussian radial profile 

ɑ(r,ξ,τ ) = A(ξ,τ) exp(-r2/rs
2 ), is estimated as  



 
 
 
 

 58 
 

𝑅𝑅𝑐𝑐ℎ(𝜉𝜉)  ≈ 𝜔𝜔𝑝𝑝𝜔𝜔𝑟𝑟0

𝑐𝑐�𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)�
1
2

 𝑟𝑟0𝐿𝐿𝑝𝑝

�𝑟𝑟0
2+4𝐿𝐿𝑝𝑝2 �

1
2

 �1 + 1
2
�1 + 𝑟𝑟0

2

𝑟𝑟𝑠𝑠2(𝜉𝜉)� �
4𝐿𝐿𝑝𝑝2 +𝑟𝑟0

2

𝐿𝐿𝑝𝑝2 𝑟𝑟0
2 �  𝜔𝜔𝑐𝑐

2(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)
𝜔𝜔𝑝𝑝

2𝜔𝜔𝑐𝑐
2 �,

          (3.13) 

where the values of zR, γ(z) and η(z) are used for an initial constant spot size in ξ. 

    The laser intensity distribution in the transverse plane at any given 

location along laser pulse for quasi-matched conditions can be represented by a 

Gaussian envelope with a flat phase fronts, ɑqm(r,ξ) = ɑqm
* = A(ξ,τ) r0/rs(ξ) exp(-

r2/rs
2(ξ)), where ɑqm refers to the amplitude of laser pulse in quasi-matched 

conditions. In terms of the independent variables, the envelope equation for 

ɑqm(r,ξ) is described by 

[2𝑘𝑘0
𝜕𝜕
𝜕𝜕𝜕𝜕

  + 𝑟𝑟0
𝑟𝑟𝑠𝑠(𝜉𝜉)

𝜕𝜕𝑘𝑘0(𝑧𝑧)
𝜕𝜕𝜕𝜕

] 𝐴𝐴(𝜉𝜉, 𝜏𝜏)  = 0.      (3.14) 

   If the nonlinearity effect is almost insignificant, the oscillations along 

the longitudinal direction are small and the laser spot size rs can be determined. 

Thus the laser spot size at any value of z for the oscillatory motion of the laser 

spot around its focal point can be obtained by the equation [178] ∂2rs/∂z2 = - 

4Δnrs/ Δnck2(r⊥,z=0)r0
4, where rs ≈ 2Rch(z)/r0k0(z). In nonparaxial approximation 

(Δn/Δnc)1/2 ≈ Rch(z)/r0. The result indicates that the plasma channel can support 

higher modes at Rch(z) and if the relativistic laser pulse propagates through the 

channel, the pulse distorts the plasma channel. 

        The variation of channel width (Rch [μm]) as a function of ωc/ωp for 

different relativistic factors γ(z) is presented in Figure 3.1 showing that the 

channel width decreases with increasing ωc/ωp and increases with γ(z). The result 

refers to the possibility of propagation of an intense short circularly polarized 

laser pulse over a significant extended distance. Furthermore, the laser pulse can 

have a much greater stability during propagation in the inhomogeneous 

magnetized plasma channel compared with the homogeneous plasma channel. 
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3.3 Dynamics of laser wakefield  

        The wakefield excitation by a laser pulse in an inhomogeneous 

magnetized plasma channel is analyzed in this section by considering the on-axis 

accelerating wakefield within the pulse and behind the pulse. The dynamics of 

the plasma wave excited by the ponderomotive force in a plasma is governed by 

the following set of equations. 

The first one is the continuity equation,  

𝜕𝜕𝑛𝑛
𝜕𝜕𝑡𝑡

+ 𝑛𝑛0𝜵𝜵.𝒗𝒗⊥ + 𝑛𝑛0
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝑧𝑧

= 0,                                                   (3.15) 

where n is the particle number density perturbation, n0 is the unperturbed particle 

number density, v⊥ and vz  are the components of the electron fluid velocity along 

perpendicular and z direction respectively. 

The equation of motion for plasma electrons in the laser field and the external 

magnetic field B0 applied along the z-direction, is given by 

 𝑚𝑚𝑚𝑚(𝑧𝑧) 𝑑𝑑𝒗𝒗
𝑑𝑑𝑑𝑑

  =  − 𝑒𝑒𝑬𝑬 − 𝑒𝑒𝐵𝐵0(𝒗𝒗× ẑ) 

where d/dt = ∂/∂t + c ∂/∂z and laser magnetic field is neglected under the 

assumption that it is weak enough as compared with the applied magnetic field.  

  The temporal variation of v⊥, the perpendicular component of electron 

velocity, is given by 

𝑚𝑚𝑚𝑚(𝑧𝑧) 𝜕𝜕𝑣𝑣⊥
𝜕𝜕𝑡𝑡

 =  − 𝑚𝑚𝑚𝑚 𝜕𝜕𝑣𝑣⊥
𝜕𝜕𝜕𝜕

 –  𝑒𝑒𝐸𝐸⊥ − 𝑒𝑒 𝑣𝑣⊥  𝐵𝐵0,       (3.16) 

where the perpendicular component of laser electric field 𝐸𝐸⊥ = 𝛻𝛻⊥(𝜙𝜙 + 𝜙𝜙𝑝𝑝) for 

high frequency, ϕ is the ambipolar potential and ϕp is the ponderomotive 

potential. The relation between perpendicular velocity and the potentials is given 

as  

�𝛾𝛾2(𝑧𝑧)  𝜕𝜕2

𝜕𝜕𝑡𝑡2  +  𝜔𝜔𝑐𝑐2� 𝑣𝑣⊥  = 𝑒𝑒𝛾𝛾(𝑧𝑧)
𝑚𝑚

𝜕𝜕
𝜕𝜕𝑡𝑡
𝛻𝛻⊥�𝜙𝜙 + 𝜙𝜙𝑝𝑝� −

𝑒𝑒𝛾𝛾(𝑧𝑧)𝜔𝜔𝑐𝑐
𝑚𝑚

 𝜕𝜕�𝜙𝜙+𝜙𝜙𝑝𝑝�
𝜕𝜕𝑧𝑧

.       (3.17) 
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Figure 3.1: Variation of the channel radius at different values of relativistic 

factors. 

 Also, 

𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝑡𝑡

 =  −𝐹𝐹𝑧𝑧
𝑚𝑚

+ 𝑒𝑒𝛾𝛾(𝑧𝑧)
𝑚𝑚

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

,        (3.18) 

and Poisson’s equation is 

∇2ϕ =4πen,                    (3.19) 

where Fz is the ponderomotive force. 

Component of ponderomotive force parallel to B0 is given by [179]  

𝐹𝐹𝑧𝑧 =  � 𝜕𝜕
𝜕𝜕𝑧𝑧

 – 𝑘𝑘0(𝑧𝑧)𝜔𝜔𝑐𝑐
𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)

𝜕𝜕
𝜕𝜕𝑡𝑡
� � 𝑒𝑒2𝐸𝐸2

𝛾𝛾(𝑧𝑧)𝑚𝑚𝑚𝑚 (𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)�,              (3.20) 

and component perpendicular to B0 of the ponderomotive potential is given by 

[179] 
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𝜙𝜙𝑝𝑝  =  − 𝑒𝑒𝐸𝐸2

𝑚𝑚(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)2 .                  (3.21) 

The equation for a plasma wave in the magnetized plasma channel can be 

obtained by solving equations (3.15) to (3.21). 

The equation turns out to be 

��𝛾𝛾2(𝑧𝑧) 𝜕𝜕2

𝜕𝜕𝑡𝑡2   +  𝜔𝜔𝑐𝑐2� 𝛻𝛻2 + �  𝜕𝜕2

𝜕𝜕𝑡𝑡2 + 𝜔𝜔𝑝𝑝2(𝑧𝑧)� 𝜕𝜕
2

𝜕𝜕𝑧𝑧2 +  𝜕𝜕
2

𝜕𝜕𝑡𝑡2  𝛻𝛻⊥2� 𝜙𝜙 =  �� 𝜕𝜕
2

𝜕𝜕𝑡𝑡2  +

 𝜔𝜔𝑐𝑐2�
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝜕𝜕𝑧𝑧

– 𝑘𝑘0(𝑧𝑧)𝜔𝜔𝑐𝑐
𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)

𝜕𝜕
𝜕𝜕𝑡𝑡
� +  𝛾𝛾(𝑧𝑧) 𝜔𝜔

𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐

𝜕𝜕2

𝜕𝜕𝑡𝑡2  𝛻𝛻⊥2�
𝑒𝑒𝐸𝐸2𝛾𝛾3(𝑧𝑧)

𝑚𝑚𝑚𝑚 (𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) . (3.22) 

Equation (3.22) for the plasma waves propagating along the z-direction, i.e., 

along magnetic field B0 reduces to 

� 𝜕𝜕
2

𝜕𝜕𝑡𝑡2  +  𝜔𝜔𝑝𝑝2�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  =  [� 𝜕𝜕
𝜕𝜕𝑧𝑧

– 𝑘𝑘0(𝑧𝑧)𝜔𝜔𝑐𝑐
𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)

𝜕𝜕
𝜕𝜕𝑡𝑡
� 𝑒𝑒𝐸𝐸2𝜔𝜔𝑝𝑝

2𝛾𝛾3(𝑧𝑧)

𝑚𝑚𝑚𝑚 (𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐).   (3.23) 

Further, equation (3.23) can be written in terms of independent variables as 

� 𝜕𝜕2

𝜕𝜕𝜏𝜏2  +  𝜔𝜔𝑝𝑝2(𝑧𝑧)�𝜙𝜙 =  �1 + 𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔𝜔𝜔𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)�  𝑒𝑒𝐸𝐸2𝜔𝜔𝑝𝑝
2𝛾𝛾3(𝑧𝑧)

𝑚𝑚𝑚𝑚 (𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)  ,   (3.24) 

where vg k0(z) ≈ ωp(z).  

The electric field inside the laser pulse along the z direction satisfies the equation 

given below 

� 𝜕𝜕2

𝜕𝜕𝜏𝜏2  +  𝜔𝜔𝑝𝑝2(𝑧𝑧)�𝐸𝐸𝑝𝑝(𝑧𝑧)  =  �1 + 𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔𝜔𝜔𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)�  𝑚𝑚𝑐𝑐2𝜔𝜔𝛻𝛻�𝑎𝑎𝑞𝑞𝑞𝑞 �2𝜔𝜔𝑝𝑝
2 (𝑧𝑧)𝛾𝛾3(𝑧𝑧)

𝑒𝑒(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)   . (3.25) 

By using the value of aqm, equation (3.25) becomes 

𝐸𝐸𝑝𝑝(𝑧𝑧)  =  −�𝑘𝑘0(𝑧𝑧)𝑅𝑅𝑐𝑐ℎ (𝑧𝑧)
𝜔𝜔𝑝𝑝

2 � × �1 + 𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔𝜔𝜔𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)� × �𝑚𝑚𝑐𝑐2𝜔𝜔𝜔𝜔𝑝𝑝
2 (𝑧𝑧)𝛾𝛾3(𝑧𝑧)

𝑒𝑒(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) � ×

 ∫ 𝜕𝜕𝑎𝑎0
2(𝜏𝜏΄)
𝜕𝜕𝜕𝜕΄

1
𝑟𝑟𝑠𝑠(𝜏𝜏΄)

 𝑠𝑠𝑠𝑠𝑠𝑠 [𝜔𝜔𝑝𝑝(𝑧𝑧)(𝜏𝜏 − 𝜏𝜏΄)] 𝑑𝑑𝑑𝑑΄.        (3.26) 

The envelope equation (3.26) can be used to obtain the axial electric field behind 

the pulse for which the appropriate boundary conditions are given as  
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ɑ0(τ) = ɑ0 sin (πτ/τ0)    0 ≤ τ ≤ τ0,                     (3.27) 

and 

ɑ0(τ) = 0   τ > τ0,          (3.28)  

where it is assumed that the front of the pulse is at τ = 0 and the back of the pulse 

is at τ = τ0 in the above equations.  

Since ∂ɑ0
2(τ)/∂τ = ɑ0

2/2 (2π/τ0) sin (2πτ/τ0) and rs(τ΄) at τ0 is rs(τ0 ), using these 

values in equation (3.26), the axial component for the wakefield within the pulse 

is given as 

𝐸𝐸𝑝𝑝(𝑧𝑧) =  −𝑎𝑎0
2

2
 𝑘𝑘0(𝑧𝑧)𝑅𝑅𝑐𝑐ℎ (𝑧𝑧)

𝜔𝜔𝑝𝑝
2

1
𝑟𝑟𝑠𝑠(𝜏𝜏0) �1 + 𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔𝜔𝜔𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)� �
𝑚𝑚𝑐𝑐2𝜔𝜔𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝛾𝛾3(𝑧𝑧)

𝑒𝑒(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) �×

�2𝜋𝜋
𝜏𝜏0
�

2

𝜔𝜔𝑝𝑝
2  − �2𝜋𝜋

𝜏𝜏0
�

2  [𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔𝑝𝑝𝜏𝜏) – (𝜔𝜔𝑝𝑝 (𝑧𝑧)𝜏𝜏0

2𝜋𝜋
) 𝑠𝑠𝑠𝑠𝑠𝑠 (2𝜋𝜋𝜋𝜋

𝜏𝜏0
)].                 (3.29) 

Above equation can be written as 

 𝐸𝐸𝑝𝑝(𝑧𝑧) =  − 𝐸𝐸0(𝑧𝑧) �𝑠𝑠𝑠𝑠𝑠𝑠 �𝜔𝜔𝑝𝑝𝜏𝜏�– �𝜔𝜔𝑝𝑝 (𝑧𝑧)𝜏𝜏0

2𝜋𝜋
� 𝑠𝑠𝑠𝑠𝑠𝑠 �2𝜋𝜋𝜋𝜋

𝜏𝜏0
��,              (3.30) 

where E0(z) is the peak value of wakefield and has the form as 

E0(z) = 𝑎𝑎0
2

2
 𝑘𝑘0(𝑧𝑧)𝑅𝑅𝑐𝑐ℎ (𝑧𝑧)

𝜔𝜔𝑝𝑝
2

1
𝑟𝑟𝑠𝑠(𝜏𝜏0) �1 + 𝑘𝑘0(𝑧𝑧)𝑣𝑣𝑔𝑔𝜔𝜔𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)� �
𝑚𝑚𝑐𝑐2𝜔𝜔𝜔𝜔𝑝𝑝

2 (𝑧𝑧)𝛾𝛾3(𝑧𝑧)

𝑒𝑒(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) �
�2𝜋𝜋
𝜏𝜏0
�

2

𝜔𝜔𝑝𝑝
2  − �2𝜋𝜋

𝜏𝜏0
�

2.  (3.31) 

  𝜓𝜓(𝑧𝑧, 𝜏𝜏) = 𝜔𝜔𝑐𝑐𝜔𝜔𝑝𝑝 (𝑧𝑧)

𝛾𝛾(𝑧𝑧)(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)𝛥𝛥𝛥𝛥 is the phase of the axial component of 

the wakefield behind the laser pulse, where Δτ refers to the temporal change in 

the front of the laser pulse with respect to its back. The phase velocity of the 

plasma wave is vph = Ω(z,τ)/K(z,τ) = c ʃ K(z´,τ) dz´/[1- (vg(τ-τ0)/ωp) ∂ωp(z)/∂z] 

and the wavelength associated with the wakefield is λw(z,τ) = 2π/K(z,τ), where 

the frequency and wave number associated with the phase of the accelerating 

wave in the laboratory frame are Ω(z,τ) and K(z,τ) respectively. The above result 

can be used to obtain the form of density tapering for optimal acceleration. The 

analysis further gives the result that the phase velocity of the wakefield increases 
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(decreases) with distance from the laser pulse with increasing (decreasing) 

plasma density. When the group velocity of the laser pulse is nearly equal to the 

phase velocity of the plasma wave, the temporal location behind the laser pulse at 

any point z is given by 

𝜏𝜏𝑐𝑐(𝑧𝑧)  =  � 𝜔𝜔𝑝𝑝
2𝜔𝜔𝑐𝑐

2

𝛾𝛾2(𝑧𝑧)𝜔𝜔2�𝛾𝛾2(𝑧𝑧)𝜔𝜔2−𝜔𝜔𝑐𝑐
2�

 + 2𝑐𝑐2

𝜔𝜔0
2𝑟𝑟𝑠𝑠2
�� 𝜔𝜔𝑐𝑐𝑐𝑐

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)

𝜕𝜕�𝑙𝑙𝑙𝑙  𝜔𝜔𝑝𝑝 (𝑧𝑧)�

𝜕𝜕𝜕𝜕
 �
−1

+ 𝜏𝜏0
2

.  (3.32) 

The location behind the pulse for which vph = c also moves with the propagating 

laser pulse. The plasma density tapering for the point, a point which remains 

stationary with respect to the axial wakefield and known as luminous point [180], 

must satisfy the following relation for N plasma wavelength, where N is a natural 

number. 

𝜕𝜕𝜔𝜔𝑝𝑝 (𝑧𝑧)

𝜕𝜕𝜕𝜕
 =   [ 𝜔𝜔𝑝𝑝

2𝜔𝜔
𝛾𝛾2(𝑧𝑧)�𝛾𝛾2(𝑧𝑧)𝜔𝜔2−𝜔𝜔𝑐𝑐

2�𝑟𝑟𝑠𝑠
] [ 1

2𝜋𝜋𝜋𝜋
] [ 1 + �𝜋𝜋𝑅𝑅𝑐𝑐ℎ (𝑧𝑧)

𝜆𝜆
�

2
 𝜔𝜔𝑝𝑝

2 (𝑧𝑧)

𝛾𝛾2(𝑧𝑧)�𝛾𝛾2(𝑧𝑧)𝜔𝜔2−𝜔𝜔𝑐𝑐
2�

 ].   (3.33) 

The electron energy gain in the wake of the laser pulse (τ > τ0) can be determined 

by solving the following coupled equations for the relativistic factor γ(z) and the 

phase ψ(z, τ) of wake at the position of particles 

𝜕𝜕𝛾𝛾(𝑧𝑧)
𝜕𝜕𝑧𝑧

 =  2 𝑒𝑒
𝑚𝑚𝑐𝑐2 𝐸𝐸0  𝑠𝑠𝑠𝑠𝑠𝑠 (𝜔𝜔𝑝𝑝 (𝑧𝑧)𝜏𝜏0

2
) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓(𝑧𝑧, 𝜏𝜏),     (3.34) 

𝜓𝜓(𝑧𝑧, 𝜏𝜏)  =  [𝜓𝜓(𝑧𝑧 = 0) + 𝜔𝜔𝑝𝑝 (𝑧𝑧)𝜔𝜔𝑐𝑐

𝑐𝑐(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐)] ∫ �(1− 𝛾𝛾2(𝑧𝑧)�
−1
− 𝛽𝛽𝑔𝑔−1]𝑑𝑑𝑑𝑑,             (3.35) 

with the  initial position of the particle is z0. 

   Figure 3.2 shows the variation of phase ψ(z, τ) of the axial component 

of the wakefield as a function of ωc/ωp  for different values of γ(z) at different 

time intervals Δτ. It is observed that the phase of the axial component of the 

wakefield increases linearly with ωc/ωp and decreases with γ(z). Thus, the phase 

shift of electrons with respect to the wakefield could be effectively controlled by 

an appropriate value of ωc/ωp . 
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3.4 Effect of external magnetic field on dephasing length and 

energy gain by electrons 

When the laser pulse propagates through the plasma, it will deplete its 

energy to the wake over a distance. The distance Lp over which the deposited 

energy on the wake equals the pulse energy evaluated from equation (3.30) by 

expressing the fields in terms of the normalized vector potential ɑ0(τ) at time τ 

turns out to be 

𝐿𝐿𝑝𝑝  = 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
2  𝑐𝑐𝜏𝜏𝐿𝐿
𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

2  
  =

�𝜔𝜔𝜔𝜔𝜔𝜔 𝑎𝑎0(𝜏𝜏)
𝑒𝑒 �

2
𝑐𝑐𝜏𝜏𝐿𝐿

�
𝜔𝜔𝑝𝑝 (𝑧𝑧)𝑚𝑚𝑚𝑚

𝑒𝑒 �
2𝑎𝑎0

2(𝜏𝜏)
4

  = 4𝜆𝜆𝑝𝑝2 (𝑧𝑧)

𝜆𝜆  
,     (3.36) 

where λp(z) is the plasma wavelength at point z. 

Since the wake propagates with the group velocity of the laser, the accelerated 

electrons will eventually outrun the wake and therefore they will slip into the 

decelerating phase over a distance called the dephasing length. The dephasing or 

slippage distance is obtained by relation 

𝛥𝛥𝑣𝑣𝑒𝑒𝑒𝑒 𝐿𝐿𝑑𝑑
𝑐𝑐

 = 𝜆𝜆𝑝𝑝 (𝑧𝑧)

2
 = 𝜋𝜋𝜋𝜋

𝜔𝜔𝑝𝑝 (𝑧𝑧) ,       (3.37) 

where Δvew = (c-vg) is the relative velocity between the electrons and the wave. 

The equation (3.37) predicts that the slippage changes as ωp
-1(z). Since the ωp

-1(z) 

depends on the applied external magnetic field, the beam slippage can be 

effectively controlled by the external magnetic field.  

Using the value of vg from equation (3.11) into the equation (3.37), we get 

𝜆𝜆𝑝𝑝 (𝑧𝑧)

2
 ≈  𝑐𝑐 �1 − 𝜔𝜔�1 − 1

2
� 𝜔𝜔𝑝𝑝

2 (𝑧𝑧)

𝜔𝜔(𝛾𝛾(𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) – 4𝑐𝑐2

𝑟𝑟𝑠𝑠2𝜔𝜔2�� 𝜏𝜏𝐿𝐿�  𝐿𝐿𝑑𝑑
𝑐𝑐

 .     (3.38) 

The solution of the above equation gives the dephasing length as 

𝐿𝐿𝑑𝑑  ≈ 𝜆𝜆𝑝𝑝 (𝑧𝑧)
𝜔𝜔𝑝𝑝

2 (𝑧𝑧)
𝜔𝜔 (𝛾𝛾 (𝑧𝑧)𝜔𝜔−𝜔𝜔𝑐𝑐) + 4𝑐𝑐2

𝑟𝑟𝑠𝑠
2𝜔𝜔2

 .       (3.39) 
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Figure 3.2: Variation of the phase of the axial component of wakefield as 

a function of ωc/ωp. 

The maximum energy gained by the electrons from the wakefield can be given as 

[181, 182]  

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 [𝑒𝑒𝑒𝑒] =  𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑒𝑒𝑒𝑒0(𝑧𝑧) 𝜆𝜆𝑝𝑝
3 (𝑧𝑧)

𝜆𝜆2  ,     (3.40) 

where Epmax is the maximum achievable energy by the wake and E0(z) is defined 

by equation (3.31). To obtain the maximum energy, low densities are better than 

the higher densities. Since the dephasing length increases with decreasing 

density, hence, the low plasma densities are required for longer acceleration 

lengths. But, if the acceleration length is limited to the diffraction range, the 

maximum energy is comparable to the product of the wakefield amplitude and the 

Rayleigh length, which is typically much lower than the dephasing energy. 



 
 
 
 

 66 
 

    Figure 3.3 illustrates the variation of Ld with ωc/ωp as a function of γ(z) 

which suggests that the dephasing length increases linearly up to the magnetic 

field ratio ωc/ωp≤ 2.5 and thereafter it becomes almost constant whereas the 

accelerating length increases with γ(z) due to which enhancement takes place in 

the combined focusing effects of the relativistic, channel coupling nonlinearities 

and wakefield. The results indicates that the decelerating length or the 

accelerating length can be increased by the external magnetic field and the 

relativistic factor γ(z). Thus, the dephasing length can be enhanced over the 

conventional decelerating length by strong magnetic field. 

 

 

Figure 3.3: Variation of the dephasing length as a function of ωc/ωp. 

 

3.5 2D PIC simulation for wakefield generation 

           Our results match the relativistic 2D PIC simulation for the laser pulse 

propagation in the inhomogeneous plasma channel for different values of the 

magnetic field ranging from B0 = 103 T (ωc = 17.8×1013 rad/s) to 7×103 T (ωc = 

12.5×1014 rad/s). The dimensions etc of simulation box are same as earlier. 
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Although, magnetic field of such high strength cannot be generated in the 

laboratory easily, the possibility of generation of such kind of magnetic field by 

the laser has been explored [2]. The magnetic field effect is examined in terms of 

ratio ωc/ωp.  

           Figure 3.4 illustrates the spatio-temporal evolution of the profile of the 

laser pulse in the given plasma channel. 

      Figure 3.5 shows the spatial evolution of the laser wakefield for 

different magnetic field ratios ωc/ωp and Figure 3.6 describes the spatial evolution 

of the total accelerated electron energy for different values of ωc/ωp. 

       It has been found that the energy gain increases with increasing 

magnetic field. However, the simulation illustrates the variable growth rate 

pattern of the energy gain for different magnetic field ratios. Figure 3.6 shows 

that the energy gain is maximum at ωc/ωp = 2, which could be an autoresonance 

condition. 

      The transverse wakefield spectrum for different magnetic field ratios 

ωc/ωp is shown in Figures 3.7 and 3.8. The transverse wakefield spectrum for 

different strengths of magnetic field predicted that the wake has maximum 

amplitude at z ≈ 270λ, where z and λ are the axial location and the laser 

wavelength respectively. It has also been shown that the transverse profile of the 

channel remains stable under variation of applied magnetic field. 

       Spatial evolution of longitudinal wakefield (Ez) for different magnetic 

field ratios ωc/ωp is presented in Figure 3.9 which shows that the wakefield has a 

maximum amplitude at z ≈ 270λ.  

         The spatial evolution of the plasma density for different magnetic 

field ratios ωc/ωp is considered in Figure 3.10. It is explained by the figure that 

the density perturbation increases with the external magnetic field.  Some 

undesired singularities and the instabilities can be suppressed by the modulation 

in the plasma density that changes the response of the relativistic nonlinear 

regime. Thus, the nonlocal perturbation in plasma density makes an 
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inhomogeneous plasma channel more significant as compared with a 

homogeneous plasma channel [160, 183]. 

 

 

Figure 3.4: Spatio-temporal evolution of the profile of the laser pulse. 
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Figure 3.5: Spatial evolution of the laser wakefield for different magnetic field 
ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 and (f) 6.00. The 

wakefield amplitude is shown on the right side. 
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Figure 3.6: Spatial evolution of the total accelerated electron energy for different 

magnetic field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 and        

(f) 6.00. 
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Figure 3.7: Spatial evolution of transverse wakefield along x-axis (Ex) for 
different magnetic field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 

and (f) 6.00. 
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Figure 3.8: Spatial evolution of transverse wakefield along y-axis (Ey) for 
different magnetic field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 

and (f) 6.00. 
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Figure 3.9: Spatial evolution of longitudinal wakefield (Ez) for different magnetic 
field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 and (f) 6.00. 
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Figure 3.10: Spatial evolution of the normalized plasma density for different 
magnetic field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 and (f) 

6.00. 
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Figure 3.11: Spatial variation of relative velocity distribution of plasma wave for 
different magnetic field ratios ωc/ωp (a) 1.00, (b) 2.00 (c) 3.00, (d) 4.00, (e) 5.00 

and (f) 6.00. 
   

Figure 3.11 illustrates spatial profile distribution of the relative velocity 

between the electrons and the wave. It is concluded that the relative velocity 

distribution and its magnitude do not change in a proportionate manner with the 

magnetic field. Various relativistic nonlinear phenomena at different magnetic 

field ratios play the important role in the spatial profile distribution of the relative 

velocity. 
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3.6  Summary 

          The analysis of short nonparaxial laser pulse in the plasma channel 

has been carried out in this chapter. The excited wake has electrostatic as well as 

electromagnetic nature thus excitation of the wake in the plasma is nonlocal. 

Therefore, the algebraic decay of the fields due to the phase mixing of plasma 

oscillations with the spatially varying frequencies occurred in the plasma channel. 

           It has been found that the energy gain increases with increasing the 

magnetic field. However, the results illustrate the variable pattern of the energy 

gain for different magnetic field strengths. It was found that the channel radius 

decreases with magnetic field and increases with relativistic factor. Due to the 

presence of the collisionless damped hybrid (electromagnetic/electrostatic) modes 

of the transversely inhomogeneous plasma the channel radius changes 

significantly. The damped quasi-modes inside the plasma channel are excited. 

 

  



 
 
 
 

 83 
 

Bibliography 

[2] S.C. Wilks, W.L. Kruer, M. Tabak and A.B. Langdon, Phys. Rev. Lett.

   69, 1383 (1992). 

[6] T. Tajima and J.M. Dawson, Phys Rev. Lett. 43, 267 (1979). 

[7] X. Wang et al., Phys Rev. Lett. 84(23), 5324-5327 (2000). 

[12] A. Sharma and V.K. Tripathi, Phys. Plasmas 16, 043103 (2009). 

[18] E. Esarey, P. Sprangle and J. Krall, IEEE J. Quant. Elect. 33(11), 1879-

 1914 (1997). 

[24] P.K. Shukla, Phys. Scr. 52, 73 (1994). 

[114] B.S. Sharma, Archna Jain, N.K. Jaiman, D.N. Gupta, D.G. Jang, H. 

 Suk and V.V. Kulagin, Phys. Plasmas 21, 023108 (2014). 

[137] E. Esarey, C. B. Schroeder and W. P. Leemans, Rev. Mod. Phys. 81, 

 1229 (2009). 

[138] P. M. Nilson, S. P. D. Mangles, L. Willingale, M. C. Kaluza, A. G. R. 

 Thomas, M. Tatarakis, R. J. Clarke, K. L. Lancaster, S. Karsch, J.

  Schreiber, Z. Najmudin, A. E. Dangor and K. Krushelnick, New J.

  Phys. 12, 045014 (2010). 

[139] A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002). 

[140] S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L.

  Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J.

  Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, 

 F.  S. Tsung, R. Viskup, B. R. Walton and K. Krushelnick, Nature

  431, 535(2004). 

[141] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, 

 J.-P. Rousseau, F. Burgy and V. Malka, Nature 431, 541 (2004). 

[142] W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. 

 G. R. Geddes, E. Esarey, C. B. Schroeder and S. M. Hooker, Nat. Phys. 

 2,696 (2006). 

[143] C. S. Liu and V. K. Tripathi, Phys. Rev. E 54, 4098 (1996). 

[144] H. M. Milchberg, C. G. Durfee and J. Lynch, J. Opt. Soc. Am. B 12,

  731(1995). 



 
 
 
 

 84 
 

[145] D. N. Gupta and Chang-Mo Ryu, Phys. Plasmas 12, 053103 (2005). 

[146] A. Sharma and V. K. Tripathi, Phys. Plasmas 12, 093109 (2005). 

[147] R. P. Sharma and P. K. Chauhan, Phys. Plasmas 15, 063103 (2008). 

[148] P. Gibbon, IEEE J. Quantum Electron. 33, 1915 (1997). 

[149]  H. Yang, J. Zhang, W. Yu, Y. J. Li and Z. Y. Wei, Phys. Rev. E 

 65,016406 (2001). 

[150] C. Deutsch, H. Furukawa, K. Mima, M. Murakami and K. Nishihara,

  Phys. Rev. Lett. 77, 2483 (1996). 

[151] E. Esarey, J. Krall and P. Sprangle, Phys. Rev. Lett. 72, 2887 (1994). 

[152] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. 

 Fonseca and L. O. Silva, Phys. Rev. ST Accel. Beams 10, 

 061301(2007). 

[153] S. Kneip, S. R. Nagel, S. F. Martins, S. P. D. Mangles, C. Bellei, O. 

 Chekhlov, R. J. Clarke, N. Delerue, E. J. Divall, G. Doucas, K. Ertel, F. 

 Fiuza, R. Fonseca, P. Foster, S. J. Hawkes, C. J. Hooker, K. 

 Krushelnick, W. B. Mori, C. A. J. Palmer, K. T. Phuoc, P. P. Rajeev, J. 

 Schreiber, M. J. V. Streeter, D. Urner, J. Vieira, L. O. Silva and Z. 

 Najmudin, Phys. Rev. Lett. 103, 035002 (2009). 

[154] A. B. Borisov, A. V. Borovskiy, A. M. Prokhorov, O. B. Shiryae, X. 

 M. Shi, T. S. Luk, A. McPherson, J. C. Solem, K. Boyer and C. K. 

 Rhodes, Phys. Rev. Lett. 68, 2309 (1992). 

[155] G. S. Sarkisov, V. Y. Bychenkov, V. N. Novikov, V. T. Tikhonchuk, 

 A. Maksimchuk, S.-Y. Chen, R. Wagner, G. Mourou and D. 

Umstadter,  Phys. Rev. E 59, 7042 (1999). 

[156] J. E. Ralph, K. A. Marsh, A. E. Pak, W. Lu, C. E. Clayton, F. Fang, W. 

 B. Mori and C. Joshi, Phys. Rev. Lett. 102, 175003 (2009). 

[157] A. G. R. Thomas, S. P. D. Mangles, Z. Najmudin, M. C. Kaluza, C. D. 

 Murphy, M. C. Kaluza and K. Krushelnick, Phys. Rev. Lett. 98, 

  054802(2007). 

[158] A. G. R. Thomas, S. P. D. Mangles, C. D. Murphy, A. E. Dangor, P. S. 

 Foster, J. G. Gallacher, D. A. Jaroszynski, C. Kamperidis, K. 



 
 
 
 

 85 
 

 Krushelnick, K. L. Lancaster, P. A. Norreys, R. Viskup and Z. 

 Najmudin, Plasma Phys. Controlled Fusion 51, 024010 (2009). 

[159] B. M. Luther, Y. Wang, M. C. Marconi, J. L. A. Chilla, M. A. 

 Larotonda and J. J. Rocca, Phys. Rev. Lett. 92, 235002 (2004). 

[160] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, J. 

 Cary and W. P. Leema, Phys. Rev. Lett. 95, 145002 (2005). 

[161] A. J. Gonsalves, K. Nakamura, C. Lin, J. Osterhoff, S. Shiraishi, C. B. 

 Schroeder, C. G. R. Geddes, C. Toth, E. Esarey and W. P. Leemans, 

 Phys. Plasmas 17, 056706 (2010). 

[162] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, 

 D. Bruhwiler, C. Nieter, J. Cary and W. P. Leemans, Nature 431, 538 

 (2004). 

[163] E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele and W. P. 

 Leemans, Phys. Rev. Lett. 84, 3081 (2000). 

[164] R. F. Hubbard, D. Kaganovich, B. Hafizi, C. I. Moore, P. Sprangle, A. 

 Ting and A. Zigler, Phys. Rev. E 63, 036502 (2001). 

[165] R. F. Hubbard, P. Sprangle and B. Hafizi, IEEE Trans. Plasma Sci. 28, 

 1159 (2000). 

[166] P. Sprangle, E. Esarey, J. Krall and G. Joyce, Phys. Rev. Lett. 69, 2200 

 (1992). 

[167] G. Shvets, J. S. Wurtele, T. C. Chiou and T. Katsouleas, IEEE Trans.

  Plasma Sci. 24, 351 (1996). 

[168] C. G. R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, 

 D. Bruhwiler, J. Cary and W. P. Leemans, AIP Conf. Proc. 737, 521 

 (2004). 

[169] T. P. A. Ibbotson, N. Bourgeois, T. P. Rowlands-Rees, L. S. Caballero,

  S. I. Bajlekov, P. A. Walker, S. Kneip, S. P. D. Mangles, S. R. Nagel,

  C.  A. J. Palmer, N. Delerue, G. Doucas, D. Urner, O. Chekhlov, R. J.

  Clarke, E. Divall, K. Ertel, P. S. Foster, S. J. Hawkes, C. J.  Hooker, B.

  Parry, P. P. Rajeev, M. J. V. Streeter and S. M. Hooker, Phys. Rev. ST

  Accel. Beams 13, 031301 (2010). 



 
 
 
 

 86 
 

[170] H. Y. Wang, C. Lin, Z. M. Sheng, B. Liu, S. Zhao, Z. Y. Guo, Y. R.

 Lu, X. T. He, J. E. Chen and X. Q. Yan, Phys. Rev. Lett. 107, 265002

 (2011).  

[171] A. Friou, E. Lefebvre and L. Gremillet, Phys. Plasmas 19, 022704 

 (2012). 

[172] T. M. Antonsen and P. Mora, Phys. Fluids B 5, 1440 (1993). 

[173] W. B. Mori and C. D. Decker, Phys. Rev. Lett. 72, 1482 (1994). 

[174]  Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle and E. Esarey,

 Phys. Rev. Lett. 77, 4186 (1996). 

[175] P. Sprangle, J. Krall and E. Esarey, Phys. Rev. Lett. 73, 3544 (1994). 

[176] N. E. Andreev, V. I. Kirsanov and L. M. Gorbunov, Phys. Plasmas 2,

  2573 (1995). 

[177] D. N. Gupta, Mamta Singh, B. S. Sharma, D. G. Jang and H. Suk,

 Simulation on laser wakefield generation in a parabolic magnetic-

 plasma channel, Proc. 5th Int. Particle Accelerator Conf. (IPAC’14),

  Dresden, Germany, paper TUPME075, pp 1528-1530, (2014). 

[178] E. Esarey and W. P. Leemans, Phys. Rev. E 59, 1082 (1999). 

[179] V. I. Karpman and H. Washimi, J. Plasma Phys. 18, 173 (1977). 

[180] T. Katsouleas, Phys. Rev. A 33, 2056 (1986). 

[181] W. P. Leemans, C. W. Siders, E. Esarey, N. E. Andreev, G. Shvets and

 W. B. Mori, IEEE Trans. Plasma Sci. 24, 331 (1996). 

[182] W. P. Leemans, P. Volfbeyn, K. Z. Guo, S. Chattopadhyay, C. B.

  Schroeder, B. A. Shadwick, P. B. Lee, J. S. Wurtele and E. Esarey,

  Phys. Plasmas 5, 1615 (1998). 

[183] R. Sadighi-Bonabi and M. Etehadi-Abari, Phys. Plasmas 17, 032101 

 (2010).  
 

 



 
 
 
 

 87 
 

Chapter 4 

Relativistic plasma mirror and attosecond pulse 

generation 

4.1 Introduction 

          The interaction of an ultra-intense ultra-short laser pulse (I ≥ 1020 

W/cm2) with an optically reflecting metal surface generates a dense plasma that 

acts as a plasma mirror (PM). These mirrors spectacularly reflect the main part of 

the laser pulse and can be used as the active optical elements to manipulate the 

spatial and temporal properties of the high harmonics. The modification in the 

temporal contrast leads to generation of an intense attosecond extreme ultraviolet 

(XUV) or X-ray pulses of energy in the range 1-10 J through nonlinear harmonic 

upconversion of the laser pulse. However, pressure exerted by the laser pulse 

deforms the plasma mirror surface nonuniformlly. This results in the rotation of 

the plasma mirror that affects the spatial and temporal contrast of the reflected 

laser field and the high harmonics. 

        Plasma mirrors are routinely used at moderate light intensities (1014 

− 1016 W/cm2) as ultrafast optical switches to enhance the temporal contrast of 

the femtosecond lasers. For intensities I ≥ 1016 W/cm2, nonlinear response of the 

plasma mirrors to the laser field results in temporal modulations of the reflected 

field, associated to the high-order harmonic generation in its spectrum. These 

harmonics generated through various mechanisms are associated, in the time 

domain, to the attosecond pulses. For lasers with intensity ≥ 1018 W/cm2, the key 

high-order harmonic generation results in the relativistic oscillating mirror where 

the laser driven oscillation of the plasma surface induces a periodic Doppler 

effect on the reflected laser field [4, 184-188] which further results in harmonic 

orders of several thousands. In these high intensity applications, laser field exerts 

such a high pressure on the plasma (≈ 5 Gbar for I ≈ 1019 W/cm2) inducing a 

significant motion of the plasma mirror surface even during a femtosecond laser 
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pulse. This leads to the spatial variation of intensity on the target giving rise to 

the deformation in the surface of the plasma mirror.  

      The work of this chapter is based on the deformation of the plasma 

mirror due to 𝐄𝐄 × 𝐁𝐁 drift. Deformation in the relativistic plasma mirror surface in 

the form of an elliptical curvature is considered which can affect the spatial and 

spectral properties of the reflected beam. This in turn rotates the plasma mirror 

which could bring a change in spatio-temporal coupling mechanism and the 

Doppler shift of the reflected laser field. The results of the harmonic generation 

and their dependence on the intensity of incident laser pulse have been presented. 

We have also studied the effect of the rotation on the wavefront of the reflected 

laser field and the effect of the phase divergence on the generation of the 

attosecond pulse. In section 4.2, theoretical model for attosecond pulse generation 

is presented. Spatial properties of reflected laser field in presence of plasma 

mirror are discussed in section 4.3. In section 4.4, spectral phase of attosecond 

pulses is described. Intensity dependence of generated harmonics is investigated 

in section 4.5. The summary of the work is presented in section 4.6.       

4.2 Theoretical model for attosecond pulse generation 

              The presented model is based on quasi-instantaneous response of 

the electrons to the laser pulse in which it is assumed that the response time of 

electrons to the laser field is less than the optical period of the laser pulse. 

Qualitatively, when a high intense ultra-short laser beam (I ≈ 1018 W/cm2) is 

incident on a highly polished surface of metal, it exerts a very high pressure of 

about 5 Gbar. Figure 4.1(a) shows the process in which electrons are pushed 

inside the metal with respect to the ion background. In each optical cycle 

electrons pulled outside with respect to ion background such that the response of 

electrons to laser field can be considered as a spring. When pulled outward, they 

form a relativistic electrons jet that are responsible for the relativistic oscillation 

of mirror (ROM) and generation of attosecond pulse as shown in Figure 4.1(b).  

The process involves the following steps. 
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1. Electrons are pushed inside due to the tremendous pressure the laser exerts on 

the electrons; a high density spike is formed at the sharp surface of the electron 

distribution. 

2. These fast electrons propagating in the dense part of the plasma form ultra-

short bunches which impulsively excites plasma oscillations. 

3. In the inhomogeneous part of the plasma formed by the density gradient at the 

vacuum-plasma interface, these collective oscillations radiate light at a different 

local plasma frequencies found in the gradient. 

 

 

 

 

 

 

 

 

(a)                                                             (b) 

Figure 4.1: Schematic representation of different processes (a) Electrons around 

n= nc are pushed inside by the incident laser and (b) pulled outward because of 

inertia. 

     Let the laser beam incident on the target surface at an angle θ and 

compress the surface through a distance x(t) at time t. It is assumed that the 

electron density at the plasma mirror surface varies as n(x) = n0 exp(x/L) for n > 

n0, where n0 is the electron density at the vacuum-plasma interface and L is the 

interaction length.  Using the theory of balancing between the pushing force 

exerted by the laser pulse and the restoring force, it is obtained that  
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 e E(x) = m ωp

2 x,        (4.1)  

where ωp
2

 = 4πn0e2/ m is the plasma frequency for electron density n0. 

 The reflected electric field from the moving surface of plasma mirror can be 

approximated as 

E(x) ∝ EL (1 + exp(x/L)),       (4.2) 

where EL = mωcɑ/e with ω = 2πc/λ is laser frequency and ɑ is the normalized 

vector potential of the laser. For inward displacement at x = L, equation (4.1) 

leads to the following expression for the maximum inward excursion xmax of 

electrons in one optical cycle 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  𝐿𝐿 𝑙𝑙𝑙𝑙 (1 + 𝜆𝜆𝜆𝜆𝑛𝑛𝑐𝑐(1 + 𝑠𝑠𝑠𝑠𝑠𝑠  𝜃𝜃)
2𝜋𝜋𝜋𝜋𝑛𝑛0

).      (4.3) 

The inward push depends on the laser strength parameter ɑ and polarization state 

of the incident beam and xmax increases with interaction length L which depends 

on the intensity of the incident laser beam and the nature of the target surface. 

To include the effect of the rotation of the plasma mirror due to 𝐄𝐄 × 𝐁𝐁 

drift, we define the angular frequency Ωr perpendicular to the plane of plasma 

mirror.  

The velocity of the electrons due to 𝐄𝐄 × 𝐁𝐁 drift is defined as 

𝒗𝒗𝒅𝒅  =  𝜴𝜴𝒓𝒓 × 𝒓𝒓 =  𝑬𝑬×𝑩𝑩
𝐵𝐵2  ,       (4.4) 

where we have assumed that rotation of the plasma mirror is considered as the 

rotation of the solid body. 

     This drift leads to an additional change in the spatial and temporal 

properties of the reflected electric field which affects the high-order harmonic 

generation (HHG) and attosecond pulse generation (ASG). 

The electric field and magnetic field in the rotating frame can be written as [189] 

𝑬𝑬ʹ = 𝑬𝑬 + (𝜴𝜴𝒓𝒓 × 𝒓𝒓)  ×  𝑩𝑩, 
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𝑩𝑩ʹ = 𝑩𝑩 + 𝑚𝑚𝜴𝜴𝒓𝒓

𝑒𝑒
.         (4.5) 

It is assumed that a constant rotation to the plasma mirror and a constant shift in 

the attosecond pulse generation takes place. Including the effect of rotation per 

cycle of laser, the equation (4.3) is reduced to the following form 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  𝐿𝐿 𝑙𝑙𝑛𝑛 (1 + 𝜆𝜆𝜆𝜆𝑛𝑛𝑐𝑐(1 + 𝑠𝑠𝑠𝑠𝑠𝑠  𝜃𝜃)
2𝜋𝜋𝜋𝜋𝑛𝑛0

 + 𝜋𝜋𝛺𝛺𝑟𝑟𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐  𝜃𝜃
𝜆𝜆𝜆𝜆

),    (4.6) 

where B << BL, BL and B are magnetic field of laser and the magnetic field 

arising due to the rotation of plasma mirror.  

The rotational angular velocity Ωr can be approximated as 

𝛺𝛺𝑟𝑟  =  ��2𝜋𝜋𝑐𝑐2(1 + 𝑎𝑎2)
1
2

𝐿𝐿𝜆𝜆𝑝𝑝 �1+ 𝜆𝜆
𝜆𝜆𝑝𝑝
�
�.       (4.7) 

This leads to the following expression for the maximum inward excursion xmax of 

electrons in a given optical period 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  =  𝐿𝐿 𝑙𝑙𝑙𝑙 (1 + 𝜆𝜆𝜆𝜆𝑛𝑛𝑐𝑐(1 + 𝑠𝑠𝑠𝑠𝑠𝑠  𝜃𝜃)
2𝜋𝜋𝜋𝜋𝑛𝑛0

 +  ��𝜋𝜋𝜋𝜋(1 + 𝑎𝑎2)
1
2

2𝜆𝜆𝑝𝑝 �1+ 𝜆𝜆
𝜆𝜆𝑝𝑝
�
�  𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃),   (4.8) 

where λp(x) is space dependent plasma wavelength and is given by λp(x) = 

λL√(nc/n0), where nc and n0 are critical and unperturbed plasma densities 

respectively.  

        From equation (4.8), it is obvious that the electron boundary 

displacement xmax depends on the normalized vector potential of the incident laser 

field. The higher the amplitude, the electrons get pushed further inside the target. 

This results in the more high-order harmonic generation (HHG) that can be 

isolated as attosecond pulse trains. The rotational effect in the plasma mirror 

further increase the boundary displacement of the electrons and provides greater 

denting in the plasma electron density surface. This result in the modification of 

the spatial envelope of plasma density that can be considered as a function of two 
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space coordinates as n(x, y) and is attributed to the spatially inhomogeneous 

ponderomotive force exerted by the laser field. 

4.3 Spatial properties of reflected laser field 

            We consider that the spatial amplitude of the reflected beam is 

Gaussian and the spatial profile of the nth harmonic is hn in the plane of the 

plasma mirror such that 

hn ∝ exp(yʹ2/2ѡn
2),        (4.9) 

where yʹ is the spatial coordinate and wn is the beam size of nth harmonic in the 

source plane z = 0. 

           Figure 4.2 shows the geometrical representation of the focusing of 

the harmonic beam by the plasma mirror. The parameter σn accounts for the 

effect of the plasma mirror curvature on the spatial properties of the harmonic 

beam. Following [190], the Rayleigh length of harmonic beam can be written as 

𝑧𝑧𝑅𝑅𝑅𝑅  =  (𝜋𝜋𝑤𝑤𝑛𝑛
2

𝜆𝜆𝑛𝑛
) + (4𝜋𝜋2𝜆𝜆𝑝𝑝2𝛺𝛺𝑟𝑟

𝑣𝑣𝑝𝑝
),       (4.10) 

where vp ≈ c is the phase velocity of the laser beam and λp is the plasma wave 

wavelength at some time t.  

The focusing position of the nth harmonic is given as 

𝑧𝑧𝑛𝑛0  =  𝑧𝑧𝑅𝑅𝑅𝑅
σn

1+σ𝑛𝑛2
 ,        (4.11) 

where σn is the focusing parameter of the nth harmonic.  

The focusing parameter is a dimensionless quantity and is defined as 

σ𝑛𝑛  = 2𝜋𝜋
𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃𝑛𝑛+𝜑𝜑𝑛𝑛 )  �𝑤𝑤𝑛𝑛

𝑤𝑤𝑓𝑓
�

2
 (ρ𝑑𝑑
𝜆𝜆𝑛𝑛

),      (4.12) 

where wn  is the waist of nth harmonic in the z = 0 plane and and wf is the waist in 

the focal plane (z = z0) respectively.  
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Figure 4.2: Focusing of the harmonic beam by the plasma mirror. The wn is the 

harmonic beam size of nth harmonics in the source plane z = 0 and zn is the 

distance between the PM surface and harmonic’s best focus. 

φn is angle of rotation of the wavefront in the focal plane of the nth harmonic and  

is defined as 

𝜑𝜑𝑛𝑛  =  √2𝜋𝜋2𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 /𝜔𝜔𝐿𝐿2.       (4.13) 

ρd is the denting parameter defined as 

ρ𝑑𝑑  = 𝑤𝑤𝑛𝑛2

2𝑓𝑓𝑛𝑛
 .         (4.14) 

fn is the focal length of the plasma mirror for nth harmonic and is given as 

𝑓𝑓𝑛𝑛  ≈ 𝑤𝑤𝑓𝑓2  𝑠𝑠𝑠𝑠𝑠𝑠  𝜑𝜑𝑛𝑛
8 𝐿𝐿 𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃𝑛𝑛+𝜑𝜑𝑛𝑛  )

 ,       (4.15) 

where θn is angle of divergence. This is one of the asymptotic focal length 

obtained from the electron dynamics only. 

    The rotating effect of plasma mirror due to 𝐄𝐄 × 𝐁𝐁 leads to the change in 

the value of wf and wn and decreases the divergence parameter of the reflected 

harmonics. 
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 4.4 Relativistic oscillating mirror and spectral phase of 

attosecond pulses 

 

    

 

 

 

 

 

 

 

Figure 4.3: Schematic representation of the process involved in ROM.  

         

The schematic representation of the relativistic oscillating mirror is shown 

in Figure 4.3. When high intense laser pulse is incident on a solid surface, the 

laser driven plasma surface becomes relativistic leading to the strong Doppler 

shifts of the laser light. As the oscillating surface rotates, it creates an additional 

phase shift and distortion in the field of the reflected harmonic beams. 

  As this phase distortion repeats itself with periodicity of the 

driving laser field leading to the more harmonics of the incident frequency 

appearing in the reflected beam as shown in Figure 4.4 in arbitrary unit (a.u.). 

The harmonic spectra associated with a train of attosecond pulses for different 

intensities are shown in Figure 4.5. 

 

Incident laser beam Reflected laser beam 

Solid material 
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Figure 4.4: Electric field spectrum from the plasma mirror. 

The harmonic divergence θn of nth harmonic is given 

𝜃𝜃𝑛𝑛2  =  � 𝜆𝜆𝑛𝑛
𝜋𝜋𝑤𝑤𝑛𝑛

�
2

 +  � 𝜆𝜆𝑛𝑛
𝜋𝜋𝑤𝑤𝑛𝑛

�
2

(𝑛𝑛𝜑𝜑𝑛𝑛)2  

or  𝜃𝜃𝑛𝑛  =  𝜃𝜃𝑛𝑛0 �1 + (𝑛𝑛𝜑𝜑𝑛𝑛)2 ,       (4.16) 

where θn
0 = λn/πwn is the harmonic divergence for the source size wn in the 

absence of plasma mirror curvature and rotational effect due to 𝐄𝐄 × 𝐁𝐁. 

4.5 Intensity dependence 

          Figure 4.5 shows the intensity dependence of the harmonic 

spectrum from a metal surface. It is found that the wavetrain of the attosecond 

pulses can be observed when intensity of the laser beam exceeds to 1018 W/cm2. 

It is further concluded that the rotation effect in relativistic oscillating plasma 

mirror changes the denting mechanism of the reflected laser field and the phase 

coherence in the attosecond pulses. The rotational effect of plasma mirror due to 

𝐄𝐄 × 𝐁𝐁 changes the phase parameter of the harmonics and increases the value of fh 
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leading to the high repetition rate for attosecond pulses with increased intensity. 

It is also observed that the intensity of the attosecond pulses depends on the 

harmonic phases. 

 

Figure 4.5: Harmonic spectra from the plasma mirror. 

 

When an electromagnetic wave is reflected from an oscillating mirror, its 

frequency spectrum is extended to high frequency range and the wave breaks-up 

into the short waves. 

In relativistic oscillating mirror, harmonics of much higher frequency are 

generated. The reflected wave’s electric field from the oscillating mirror in a time 

tʹ = t−x(t)/c is given as [4] 

𝐸𝐸𝑟𝑟  =  − 1
𝑐𝑐
𝜕𝜕𝐴𝐴𝐿𝐿�𝑡𝑡 ʹ,𝑥𝑥ʹ�

𝜕𝜕𝑡𝑡 ʹ
 ,        (4.17)  

where xʹ and tʹ are the position and time of the reflected waves respectively in the 

observer’s frame and AL is the vector potential of the laser pulse. The oscillating 

mirror model implies that the tangential components of the vector potential are 

zero at the mirror surface. The component of reflected electric field from the 

oscillating plasma surface will be parallel to incident electromagnetic wave. As a 

result of it, if the oscillating mirror moves with relativistic factor 𝛾𝛾𝐿𝐿  » 1 towards 
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the laser pulse with oscillating frequency ωosc, electric field E‖ and duration 𝜏𝜏𝐿𝐿, 

the reflected electric field will be given as [4]  

𝐸𝐸𝑟𝑟  ∝  𝛾𝛾𝐿𝐿2𝐸𝐸‖,         (4.18) 

and the pulse duration will be [4] 

𝜏𝜏𝐿𝐿ʹ  ∝ 𝜏𝜏𝐿𝐿
𝛾𝛾𝐿𝐿

2.         (4.19) 

The Fourier spectrum of the electric field of reflected beam at position xʹ and 

time tʹ is 

𝐸𝐸𝑟𝑟(𝛺𝛺𝑟𝑟) =  𝑚𝑚𝑚𝑚𝜔𝜔
2

𝑒𝑒√2𝜋𝜋
 ∫ 𝑎𝑎�𝑡𝑡ʹ, 𝑥𝑥ʹ�𝑒𝑒

�−ί𝜔𝜔�𝑡𝑡ʹ−�𝑥𝑥
ʹ

𝑐𝑐 ���

  𝑒𝑒−ί𝜑𝜑𝑟𝑟  𝑑𝑑𝑡𝑡ʹ,    (4.20) 

where 

tʹ − (xʹ/c) = t,         (4.21) 

and φr is the phase of reflected wave and is given by 

𝜑𝜑𝑟𝑟  =  ∫ 𝛺𝛺𝑟𝑟(𝑢𝑢)𝑑𝑑𝑑𝑑 =  𝜔𝜔[2𝑡𝑡ʹ(𝑢𝑢) –  𝑢𝑢 ] ,     (4.22) 

where u = tʹ − xʹ(tʹ)/c and spatial position xʹ, time tʹ and tʹ(u) can be obtained from 

the equation 

𝑡𝑡ʹ(𝑢𝑢) = 𝑢𝑢 +
𝑥𝑥ʹ�𝑡𝑡 ʹ(𝑢𝑢)�

𝑐𝑐
 .        (4.23) 

Differentiating equation (4.22), we obtain 

𝜕𝜕𝜕𝜕𝑟𝑟
ʹ

𝜕𝜕𝜕𝜕
 =  𝜔𝜔 �1 + 𝛽𝛽ʹ(𝑢𝑢)

1–𝛽𝛽ʹ(𝑢𝑢) �,       (4.24) 

where β́(u) = c -1 dxʹ(u)/dtʹ is the mirror velocity normalized by c. Using the 

exponential decay parts and properties of Array’s function to analyze the 

spectrum modulation due to the 𝐄𝐄 × 𝐁𝐁 effect and equations (4.21-4.24), we obtain 
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𝐸𝐸𝑟𝑟  =  � 𝜔𝜔
𝑛𝑛  Ωr  

�
5
2  𝑒𝑒

�− 
16�√5� Ω r

5
2

5��𝑛𝑛3�𝜔𝜔𝜔𝜔𝑝𝑝

3
2

 �

×  𝑅𝑅𝑅𝑅� 𝑒𝑒ί Ω r  𝑡𝑡  − ί𝜑𝜑𝑟𝑟
ʹ

10√2𝜔𝜔𝑝𝑝

5��𝑛𝑛3𝜔𝜔𝑝𝑝+ί𝜔𝜔 �

� ,   (4.25) 

where Ωr is the rotational frequency of the plasma mirror and n is harmonic order. 

The amplitude of these reflected pulses decreases fast when Ωr grow.  

Using equation (4.25) to obtain the intensity of nth harmonic as 

𝐼𝐼𝑛𝑛  ∝  � 𝜔𝜔
𝑛𝑛  Ωr  

�
5

 �𝑛𝑛
3𝜔𝜔𝑝𝑝

2  – 𝜔𝜔2

8𝜔𝜔𝑝𝑝
2 � 𝑒𝑒

�−  
32�√5� Ω r

5
2

5��𝑛𝑛3�𝜔𝜔𝜔𝜔𝑝𝑝

3
2
�

.     (4.26) 

The intensity of the reflected pulses decreases with higher harmonics and the 

plasma frequency.  

Figure 4.5 shows the spectral representation of the intensity of reflected 

electric field of different attosecond pulses corresponding to two different 

intensities of the incident laser beam. It is observed that the intensity of the 

attosecond pulses depend on the harmonic phases. If vr is the relativistic velocity 

of the reflected electric field of a particular harmonic at time tʹ(u), the maximum 

relativistic factor will be given as 

𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚   =  1

��1 –  
𝑣𝑣𝑟𝑟

2�𝑡𝑡ʹ(𝑢𝑢 )�

𝑐𝑐2 �

  .      (4.27) 

Consequently, for the surface γ factor during a relativistic spike, the highest 

harmonic will be generated over the time period 

∆𝑡𝑡 ≈ 1
𝜔𝜔𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚3   ≈ 1

𝜔𝜔�𝑛𝑛𝑐𝑐𝑛𝑛0
�

3
2
 ,       (4.28) 

where nc is the critical density of the plasma surface. 

For this duration the reflected fields move with relativistic velocity in the 

direction of the emitted radiation.  



 
 
 
 

 99 
 
The intensity variation over this time interval for nth harmonic can be written as 

𝐼𝐼𝑛𝑛  ∝  � 𝜔𝜔  𝑛𝑛𝑐𝑐
𝑛𝑛  Ωr  𝑛𝑛0

�
5
�𝑛𝑛

3𝜔𝜔𝑝𝑝
2  – 𝜔𝜔2

8𝜔𝜔𝑝𝑝
2 � 𝑒𝑒

�− 
32�√5� Ω r

5
2

5��𝑛𝑛3�𝜔𝜔𝜔𝜔𝑝𝑝

3
2
�

.     (4.29) 

Equation (4.29) shows a theoretical result of the temporal structure of the 

intensity of attosecond pulse trains produced on the plasma mirrors. 

4.6 Summary 

       The chapter presents a simple analytical model for the generation of 

the attosecond pulse from the relativistic oscillating plasma mirror with 𝐄𝐄 × 𝐁𝐁 

effect that leads to the rotation of the oscillating plasma mirror. The 𝐄𝐄 × 𝐁𝐁 effect 

changes the harmonic divergence which could change the pattern of extended 

ultra-broadband attosecond pulse spectrum and repetition rate. Also, it addresses 

the temporal characterization of the reflected electric field from plasma mirror 

with temporal resolution going down to the attosecond range. It is further 

observed that the harmonic number of the reflected laser field increases with the 

intensity of the incident laser beam.  

 

 

 

 

 

 

 



 
 
 
 

 100 
 

Bibliography 

        [4]  T. Baeva, S. Gordienko and A. Pukhov, Phys Rev. E 74, 046404 (2006). 

[184] C. Thaury and F. Quéére, J. Phys. B 43, 213001 (2010). 

[185] R. Licheters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Rev. E 3, 3425

 (1996). 

[186] A.A. Gonoskov, A.V. Korzhimanvo, A.V. Kim, M. Marklund and 

 A.M. Sergeev, Phys. Rev. E 84, 046403 (2011). 

[187] B.Dromey et al., Nat. Phys. 2, 456 (2006). 

[188] Michael Chini, Kun Zhao and Zenghu Chang, Nat. Photonics 8, 178-

 186  (2014). 

[189] B. Lehnert, Dynamics of charged particles, Interscience  Publishers,

   New York (1964). 

[190] H. Vincenti , S. Monchoc , S. Kahaly , G. Bonnaud, P. Martin and F.

   Quéré, Nat. Communication (2014).  

 



 
 
 
 

 101 
 

Chapter 5 
High intense laser pulse propagation in an underdense 

magnetized plasma 
             

5.1 Introduction  
  It has been about forty years since Tajima and Dawson [6] 

proposed the laser beams to excite plasma waves for the electron acceleration. In 

recent years, there has been tremendous progress in this field, both theoretical and 

experimental. 

  Plasma waves are generated through the displacement of plasma 

electrons by the ponderomotive force of a laser pulse. Electrons are trapped in 

large amplitude plasma waves. Under resonant condition, the trapped plasma 

electrons are accelerated to very high energies over very short distances by the 

longitudinal electric field of the waves. However, the laser plasma interaction 

distance is always less than or equal to the vacuum Rayleigh length due to the 

diffraction of the laser pulse in the plasma and hence, eliminates the advantage of 

ultrahigh gradient acceleration. The higher accelerations can be obtained only by 

maintaining the higher magnitudes of the wakefield amplitude as well as the laser 

plasma interaction length. Chen et al. [191] first investigated the plasma 

wakefield and Rosenzweig et al. [192, 193] reported the first experimental 

evidence followed by K. Nakajima et al. [194] for generation of plasma 

wakefield.       

  In laser plasma interactions, fast electrons are produced by the 

parametric instabilities such as the two plasmon decay near the quarter critical 

density and the Stimulated Raman Scattering (SRS) [195, 196] below the quarter 

critical density which have been extensively studied by the particle simulation in 

unmagnetized plasmas [197-202].  

  During the past few years there has been a great deal of theoretical 

and computational work on the propagation of high intensity short laser pulses 

through underdense plasmas [203-205] in which the pulse lengths less than the 

diffraction length, intensity approaching 1018 Wcm-2 for 1μm light and plasma 
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density of the order of 1% of the critical density is considered. At these high 

intensities the laser pulses, however, are susceptible to much collective 

phenomena which can cause the wave break up. One of these phenomena is the 

shock formation [39].  

         For the interaction of a high intense laser pulse and the plasma 

electrons, the electron density has an oscillatory component that modulates the 

phase of the electromagnetic wave effectively producing the wake. The magnetic 

effect modifies the localized conditions for the laser plasma interaction and hence 

the spatio-temporal properties of the accelerated particles. This also modifies the 

behavior of the plasma wave [206]. 

  Propagation of a high intense ultra-short Gaussian laser pulse of 

normalized vector potential ɑ (= eA/mc) in an underdense magnetized plasma of 

density 10-5 ncr has been considered. The high intense ultra-short laser pulse 

evokes the wakefield excitation in the Rayleigh interaction length zR = 

πw0
2/1.4λp, where w0 is the focal spot diameter which is equal to 8 μm and λp is 

electron plasma wavelength. The charge separation in the interaction region 

generates strong electric field of peak value E = mcɑω/e, where m, c, ɑ, ω and e 

are the mass of an electron, speed of light, normalized vector potential, laser 

frequency and the charge of an electron respectively. In present analysis, electron 

acceleration by a Gaussian laser pulse in the presence of an axial magnetic field 

in a plasma has been studied.  

   In this chapter, the effect of magnetic field on the wakefield 

excitation for high intense ultra-short Gaussian laser pulse in an underdense 

magnetized plasma is analyzed. In section 5.2, relation between the generated 

electric field and the externally applied magnetic field has been obtained. In 

section 5.3, two dimensional particle-in-cell (2D PIC) simulation results are 

presented to give an insight into the the wakefield evolution. Finally, the 

summary of results and findings are presented in section 5.4. 
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5.2 wakefield analysis 

Consider the propagation of a high intense ultra-short laser pulse in a low 

density plasma immersed in an axial magnetic field B = B0 ẑ. 

The vector potential [108] of the high intense ultra-short laser pulse is given by  

𝑨𝑨 =  𝐴𝐴0 𝑒𝑒
 − 𝑟𝑟

2

𝑤𝑤0
2  𝑒𝑒  − 𝜉𝜉

2

2𝐿𝐿2  𝑒𝑒−𝑖𝑖�kz  – ωt�,       (5.1)                            

where ξ = z – ct, L is laser pulse length equal to c τL, r = √(x2+y2) is the radial 

coordinate, k is the propagation constant, ω is the laser frequency and c is the 

speed of light. 

The propagation constant [40] is given by  

𝑘𝑘 = 𝜔𝜔
𝑐𝑐

 �1 − 𝜔𝜔𝑝𝑝
2

𝜔𝜔(𝛾𝛾𝛾𝛾−𝜔𝜔𝑐𝑐) 
�

1
2
,       (5.2) 

here ωc = eB0/m  is the cyclotron frequency, ωp = 4πn0e2/m is the electron plasma 

frequency, n0 is the unperturbed density of plasma and γ = (1+ɑ2)1/2 is the 

relativistic factor.  

The laser pulse propagates, in the rarefied plasma, almost with the speed 

of light c, spot size w0 and length of the pulse remain almost unchanged during 

the propagation. 

The response of underdense magnetized plasma to the high intense ultra-short 

laser pulse can be described by electron momentum equation   

𝑚𝑚𝑑𝑑(𝛾𝛾𝒗𝒗)
𝑑𝑑𝑑𝑑

 = −𝑒𝑒𝑬𝑬 − 𝑒𝑒(𝒗𝒗 × 𝑩𝑩) − 𝑒𝑒𝐵𝐵0(𝒗𝒗× ẑ),     (5.3) 

 where electric field and magnetic field of the laser pulse are given in 

terms of the vector potential as 

𝑬𝑬 = −𝜕𝜕𝑨𝑨
𝜕𝜕𝜕𝜕

,          (5.4) 

𝑩𝑩 =  𝛁𝛁 × 𝑨𝑨.         (5.5) 
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For an axial symmetric geometry, we obtain from the equations (5.3-5.5) 

𝑚𝑚𝑑𝑑(𝛾𝛾𝑣𝑣𝑟𝑟)
𝑑𝑑𝑑𝑑

 = 𝑒𝑒 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑒𝑒𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑒𝑒𝐵𝐵0𝑣𝑣𝜑𝜑 ,      (5.6) 

𝑚𝑚𝑑𝑑�𝛾𝛾𝑣𝑣𝜑𝜑�
𝑑𝑑𝑑𝑑

 = 𝑒𝑒𝐵𝐵0𝑣𝑣𝑟𝑟 ,        (5.7) 

𝑚𝑚𝑑𝑑(𝛾𝛾𝑣𝑣𝑧𝑧)
𝑑𝑑𝑑𝑑

 = −𝑒𝑒𝑣𝑣𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.        (5.8) 

Using equation (5.1) in equations (5.6-5.8), we obtain the axial component of the

   velocity of the electrons in the plasma as 

𝑣𝑣𝑧𝑧 = 𝑐𝑐𝛼𝛼2𝜉𝜉2

1−𝛼𝛼2𝜉𝜉2,         (5.9) 

where 

 𝛼𝛼2   = 𝑐𝑐2𝑎𝑎2

𝐿𝐿4�𝛾𝛾2𝜔𝜔2−𝜔𝜔𝑐𝑐
2�

.        (5.10) 

Here 𝑎𝑎 = 𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚

 is the normalized vector potential of the laser pulse.  

Since the wakefield is excited in the plasma during laser pulse plasma interaction,  

 the value of axial electric field of the wake excited in the plasma is given by 

−𝑒𝑒𝐸𝐸𝑧𝑧 = 𝑚𝑚𝑑𝑑𝑑𝑑𝑣𝑣𝑧𝑧
𝑑𝑑𝑑𝑑

 . 

Using equation (5.9), we have obtained the value of the axial electric field as 

𝐸𝐸𝑧𝑧   = 𝑚𝑚𝑐𝑐2𝛾𝛾
𝑒𝑒

2𝛼𝛼2𝜉𝜉
1−𝛼𝛼2𝜉𝜉2 .        (5.11) 

The density perturbation in the plasma due to the wake is   

𝑛𝑛 = 𝑛𝑛0
2𝛾𝛾𝛼𝛼2𝑐𝑐2

𝜔𝜔𝑝𝑝
2  1+3𝛼𝛼2𝜉𝜉2

(1−𝛼𝛼2𝜉𝜉2)3.       (5.12) 

The nonlinear current density in the plasma in presence of the laser pulse is 

obtained by using equation (5.9) and (5.12) as 
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 . 𝐽𝐽 = 𝑒𝑒𝑛𝑛0
2𝛾𝛾𝑐𝑐3𝛼𝛼4𝜉𝜉2

𝜔𝜔𝑝𝑝
2  1+3𝛼𝛼2𝜉𝜉2

(1−𝛼𝛼2𝜉𝜉2)4.                (5.13)   

  𝐽𝐽 = 𝑒𝑒𝑛𝑛0
2𝛾𝛾𝑐𝑐3𝛼𝛼4𝜉𝜉2

𝜔𝜔𝑝𝑝
2  

3𝛼𝛼2𝜉𝜉2�1+ 1
3𝛼𝛼2𝜉𝜉2�

𝛼𝛼8𝜉𝜉8� 1
𝛼𝛼2𝜉𝜉2 −1�

4 . 

  Since 1 << 1
3𝛼𝛼2𝜉𝜉2 , hence the nonlinear current density is obtained as 

𝐽𝐽 = 𝑒𝑒𝑛𝑛0
2𝛾𝛾𝑐𝑐3

𝜔𝜔𝑝𝑝
2  𝛼𝛼4𝜉𝜉2.         (5.14)  

        The expression of nonlinear current density offers an opportunity to 

further analysis of plasma such as instability etc.  

The generation of the wakefield in a plasma is depending on the intensity 

of laser pulse and the laser pulse gets slightly modified with time. 

5.3 PIC simulation results  

         Variation in the electron density due to the generation of the 

wakefield in the plasma is shown in Figure 5.1. Spatial profile of the electric field 

due to wake are plotted in Figures 5.2(a) and 5.2(b). It is shown that the evolution 

of the wakefield in a plasma depends on the magnitude of the external magnetic 

field. Figure 5.3 illustrated the spatial variation of the laser pulse propagating 

through a plasma which shows that the laser pulse gets slightly modified with 

time. Our results match that of the two dimensional PIC simulation of the 

propagation of a laser pulse, with the same typical set of parameters used earlier, 

in a magnetized plasma which gives an insight into the wakefield evolution.  
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Figure 5.1:  Spatial variation of the electron density relative to the 

critical density (i.e. on the scale of ± 6×10-5 n/ncr). 
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(a) 

 

(b) 

Figure 5.2: Spatial profile of normalized axial electric field at magnetic field 

ratios ωc/ωp (a) 0.31 (b) 1.57. 
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.   (a)     (c) 

 

(b)                              (d) 

Figure 5.3: Evolution of the laser pulse at time (a) 10 τL (b) 20 τL (c) 30 τL (d) 40 

τL. 
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5.4 Summary 

The generation of the wakefield in a plasma due to variation in the electron 

density depends on the magnitude of the external magnetic field.  The energy 

exchange is more effective at the higher values of the magnetic field. It is also 

shown that the laser pulse gets slightly modified with time. 
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Chapter 6 

Conclusion and future work 

   In this thesis, we have presented an analytical model of orbital angular 

momentum transfer from and magnetic field generation by the relativistic 

Laguerre-Gaussian (LG) beam. Angular momentum transfer and magnetic field 

generation for both the linearly and circularly polarized Laguerre-Gaussian 

beams are presented in the relativistic domain. It is observed that generated 

magnetic field depend on the orbital angular momentum (OAM) transfer and 

mass correction of a photon in the relativistic limit. The effective mass of photons 

becomes more significant at higher Laguerre-Gaussian modes and larger plasma 

densities. The generated magnetic field depends on the Laguerre-Gaussian mode 

order, laser intensity, azimuthal angle and relativistic factor. It is found that the 

generated magnetic field increases with the laser intensity. It is observed that the 

generated axial magnetic field decreases on increasing the azimuthal angle when 

beam intensity is constant. The magnitude of the generated axial and azimuthal 

magnetic fields changes with both, the mode order of LGp
|Ɩ| and the azimuthal 

symmetry. Further, it is observed that excitation of magnetic fields are possible 

for both circularly and linearly polarized laser beams and for different azimuthal 

angles. The magnitude of generated magnetic field due to circularly polarized 

Laguerre-Gaussian beam of higher modes decreases with increasing azimuthal 

angle and is greater than that of the linearly polarized beam. It is also shown that 

the magnetic field generated due to the higher Laguerre-Gaussian modes is not 

quasistatic but change over some spatial distribution of the plasma.  

       The wakefield generation in an inhomogeneous magnetized plasma 

channel is also considered in the present work. The excited wake has an 

electrostatic as well as an electromagnetic nature and thus excitation of the wake 

in the plasma is nonlocal. Therefore, the algebraic decay of the fields due to the 

phase mixing of plasma oscillations with the spatially varying frequencies 

occurred in the plasma channel. Channel radius of the laser pulse changed 

significantly by the presence of the collisionless damped hybrid 
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(electromagnetic/electrostatic) modes of the transversely inhomogeneous plasma. 

It has been shown that the channel width decreases with increasing magnetic field 

ratio (ωc/ωp) and increases with relativistic factor (γ(z)). The results indicate that 

the propagation of an intense short circularly polarized laser pulse propagates 

over a significant extended distance. Furthermore, the laser pulse can have a 

much greater stability during propagation in the inhomogeneous magnetized 

plasma channel as compared with the homogeneous plasma channel. It is 

observed that the phase of the axial component of the wakefield increases linearly 

with magnetic field ratio (ωc/ωp) and also increases with relativistic factor (γ(z)). 

Thus, the phase shift of electrons with respect to the wakefield could be 

effectively controlled by an appropriate value of ωc/ωp. It is also observed that the 

dephasing length increases linearly up to the magnetic field ratio ωc/ωp ≤  2.5 and 

thereafter it becomes almost constant whereas the accelerating length increases 

with γ(z) leading to the enhancement taking place in the combined focusing 

effects of the relativistic channel coupling with the nonlinearities and the 

wakefield. The results indicate that the decelerating length or the accelerating 

length can be increased by the external magnetic field and the relativistic factor 

γ(z). Thus, the dephasing length can be enhanced over the conventional 

decelerating length by strong magnetic field. It has been found that the energy 

gain increases with increasing magnetic field. However, the simulation illustrates 

the variable pattern of the energy gain for different magnetic field strengths. It is 

predicted that an autoresonance condition is achieved at ωc/ωp = 2 where the 

energy gain is maximum. The wakefield gets longitudinal as well as transverse in 

the presence of the applied magnetic field. The transverse wakefield spectrum for 

different strengths of magnetic field predicted that the wake has maximum 

amplitude at z ≈ 270λ, where z and λ are axial location and laser wavelength 

respectively. The transverse profile of the channel remains stable under the 

variation of applied magnetic field. The longitudinal wakefield profiles for 

different magnetic field strengths have shown that the wakefield has a maximum 

amplitude at z ≈ 270λ. The density perturbation increases with the external 

magnetic field.  Some undesired singularities and instabilities can be suppressed 

by the modulation in the plasma density changing the response of the relativistic 
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nonlinear regime. The relative velocity distribution and magnitude change, but, 

not proportionately, with the magnetic field when spatial profile distribution of 

the relative velocity is considered. Various nonlinear phenomena at different 

magnetic field ratios play an important role in the spatial profile distribution of 

the relative velocity.  

        The thesis also presents a simple analytical model for the generation 

of the attosecond pulse from the relativistic oscillating plasma mirror with E × B 

effect that leads to the rotation in the oscillating plasma mirror. The E × B effect 

changes the harmonic divergence which could change the pattern of an extended 

ultra-broadband attosecond pulse spectrum and repetition rate. It is further 

observed that the number of harmonics in the reflected laser field increases with 

the intensity of the incident laser beam and the electron plasma density.  It is 

found that the wave train of the attosecond pulses can be observed when intensity 

of the laser beam exceeds 1018 W/cm2. It is further concluded that the rotation 

effect in relativistic oscillating plasma mirror changes the denting mechanism of 

the reflected laser field and the phase coherence in the attosecond pulses. The 

rotation effect of plasma mirror due to E × B changes the phase parameter of the 

harmonics and increases the value of focal length of the plasma mirror leading to 

the high repetition rate for attosecond pulses with increased intensity.  

       The wakefield excitation and electron acceleration by a high intense 

ultra-short laser pulse in an underdense plasma in presence of an axial magnetic 

field has been studied. Also, the results of the PIC simulation have been compared 

with. It is demonstrated that the energy exchange is more effective at the higher 

values of the magnetic field and the laser pulse gets modified with time. 

        All these findings are relevant to self-focusing, wakefield 

acceleration, inertial confinement fusion and space plasmas etc. 

         In future, we are planning to establish these results with the help of 

3D PIC simulation also in order to have better understanding of pulse plasma 

angular momentum transfer for different pulse shapes and intensities and other 

related nonlinear phenomena.   
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SUMMARY 

The Chirped Pulse Amplification (CPA) technology has made it possible 

to have the high intense and ultra-short laser pulses; the nonlinear interaction of 

such pulses with plasma gives rise to several new phenomena which have not 

encountered so far in classical physics.  

The nonlinearity can be produced either by the relativistic effects or 

through the modification of plasma by the ponderomotive force of high intense 

laser pulses. When a high intense ultra-short laser pulse propagates through a 

plasma, the wakefield is generated due to the high energy electron oscillations in 

the plasma. The quasistatic magnetic field generation due to various phenomena 

is one of the most significant nonlinear effects produced in the high intense ultra-

short laser pulse plasma interaction. 

This thesis is on the nonlinear interaction of an intense ultra-short pulse 

laser with a magnetized plasma. The research work presented in the thesis has 

been organized in six chapters. 

        In chapter 1, an introduction of the thesis and the concepts/phenomena 

such as Gaussian, Laguerre-Gaussian modes, high-order harmonic generation, 

attosecond pulses and other related topics have been briefly discussed. 

        In chapter 2, we have studied the nonlinear interaction of a linearly and 

circularly polarized Laguerre-Gaussian (LG) laser pulse with an inhomogeneous 

parabolic plasma channel, especially, the transfer of the orbital angular 

momentum (OAM) from the photons to the plasma electrons which results in the 

excitation of the magnetic field. 

         In a Laguerre-Gaussian laser pulse, the electric field is proportional to 

the product of the Gaussian function and associated Laguerre polynomial (Lp
|Ɩ|) 

and has an azimuthal angular dependence of exp (± ι |Ɩ| φ), where |Ɩ| and p are 

azimuthal and radial mode indices respectively. These modes are the eigen modes 

of the angular momentum operator carrying an angular momentum equal to |Ɩ| ħ. 

Since the momentum has an azimuthal component, there is a finite longitudinal 

angular momentum of the laser pulse along the direction of propagation and is 
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proportional to ± |Ɩ|. The factor exp ± (ι |Ɩ| φ) is responsible for the plasma 

vorticity imparting the helicoidal motion to the photons. 

          We have used the Proca equation and calculated the effective mass of 

photons in plasma. A theory of interaction of the Laguerre-Gaussian laser beam 

with plasma is outlined and the governing equations for the transfer of orbital 

angular momentum and the effective mass of photons in a plasma are derived. 

The Laguerre-Gaussian laser pulse not only exerts the longitudinal force when it 

impinges on any dielectric medium but also exerts a transverse force in the radial 

and the azimuthal directions. The azimuthal force causes a torque on the plasma 

electrons with a corresponding transfer of the angular momentum from the beam 

to the plasma electrons leading to the rotation of the plasma electrons. The 

rotational motions of the electrons constitute a nonlinear current in the axial and 

the azimuthal directions resulting in the excitation of magnetic field. The 

interaction of a photon with a spatially structured plasma, e.g., vortex, etc., can be 

interpreted by an additional mass (effective mass) like term that appears in the 

Proca-Maxwell equations. The effective mass acquired by the photon in the 

spatially structured plasma couples with a plasmon to impart orbital angular 

momentum. The orbital angular momentum component on account of acquiring 

mass by the photon in a plasma may have significant role in various stimulated 

scattering processes and the magnetic field generation. The coupling of angular 

momentum to plasma for the different Laguerre-Gaussian modes (for various |Ɩ| 

values, e.g., |Ɩ| = 0, |Ɩ| = 1) and their effect on the magnetic field generation is 

analyzed. The analysis of the generation of magnetic fields Bz and Bφ for the 

different azimuthal angles and the beam intensities has been carried out.  

          These results match with the relativistic two dimensional (2D) PIC 

simulation for the normalized vector potential ɑ (= eA/mc2) which varies from ɑ 

= 1.0 to 4.0, where A, c, e and m are vector potential, speed of light, charge and 

mass of the electron respectively. We have taken the typical set of parameters for 

a laser pulse, e. g., intensity ranging from 1.0×1018 −1.3×1019 W/cm2, central 

wavelength λ = 1 μm, spot size w0 = 50 μm and pulse duration 33 fs. We have 

considered the profile of the plasma density as 𝑛𝑛 = 𝑛𝑛0  �1 + 𝛥𝛥𝛥𝛥
𝑛𝑛0

𝑟𝑟2

𝑟𝑟0
2�, where the 
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unperturbed plasma density is n0 ≈ 1019 cm−3, r is radial distance and r0 is the 

channel radius. The dimensions of the simulation box are 400 × 200 μm2. The 

simulation box moves and scans 8000 × 400 cells with five particles per cell.  

          It has been observed that the generated magnetic field depends on the 

orbital angular momentum (OAM) transfer and mass correction of a photon in the 

relativistic limit. The generated magnetic field depends on the Laguerre-Gaussian 

mode order, laser intensity, azimuthal angle and the relativistic gamma factor. It 

is found that the generated magnetic field increases with the laser intensity.  

    The strength of the magnetic field also depends on the polarization state 

of a laser field.  It is shown that the excitation of the magnetic fields for both 

linearly and circularly polarized laser beams depends on the azimuthal angle. The 

magnitude of generated magnetic field due to circularly polarized Laguerre-

Gaussian beam of higher modes decreases with increasing azimuthal angle and is 

greater than that of the linearly polarized beam. It is further observed that the 

magnetic field generated due to the higher Laguerre-Gaussian modes is not 

quasistatic but changes with the spatial distribution of the plasma.  

      In chapter 3, the nonlinear interaction of a circularly polarized 

Gaussian laser pulse with the intensity I ≈ 1.3×1019 Wcm-2, central wavelength ≈ 

1.0 μm and pulse duration ≈ 33 fs is considered. The laser pulse propagates 

through a preformed inhomogeneous plasma channel generated by an ultra-

relativistic laser pulse (ɑ ≈ 3). The externally applied magnetic field is taken 

along the pulse propagation direction, i. e., along z-axis. 

    The plasma channel profile has been considered to be parabolic. The 

analysis of short nonparaxial laser pulse in plasma channel has been carried out. 

The electron energy gain in the wake of the laser pulse at different magnetic field 

strengths is determined. The effects of magnetic field on the wakefield structure, 

channel radius and accelerating length have been analyzed.  
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     It has been found that the energy gain increases with increasing 

magnetic field. However, the result illustrates the variable pattern of the energy 

gain for different magnetic field strengths. It is predicted that the autoresonance 

condition is achieved at ωc/ωp = 2, where the energy gain is maximum. The 

variations of the channel width as a function of magnetic field ratio ωc/ωp for 

different relativistic factors have shown that the channel width decreases with 

increasing ωc/ωp and increases with relativistic gamma factors. This result shows 

that the laser gets self focused and hence there is a possibility of propagation of 

an intense short circularly polarized laser pulse over a significant extended 

distance. Our results match with the relativistic 2D PIC simulation for the laser 

pulse propagated in the inhomogeneous plasma channel for different values of the 

magnetic field ranging from B0 = 103 T (ωc = 17.8×1013 rad/s) to 7×103 T (ωc = 

12.5×1014 rad/s). The dimensions etc of simulation box are same as earlier.

        It has been observed that the excited wake has electrostatic as well as 

electromagnetic nature and thus excitation of the wake in the plasma is nonlocal. 

The transverse wakefield spectrum for different strengths of magnetic field 

predicted that the wake has maximum amplitude at z ≈ 270λ, where z and λ are 

axial location and laser wavelength respectively. The transverse profile of the 

channel remains stable under variation of applied magnetic field. The 

longitudinal wakefield profiles for different magnetic field strengths have shown 

that the wakefield has a maximum amplitude at z ≈ 270λ. We also find that the 

density perturbation increases with the external magnetic field. The phase of the 

axial component of the wakefield increases linearly with magnetic field and 

increases with the relativistic gamma factor and thus the phase shift of electrons 

with respect to the wakefield could be effectively controlled by an appropriate 

value of the magnetic field strength.  

     Since the wake propagates with the group velocity of the laser, the 

accelerated electrons will eventually outrun the wake and therefore they will slip 

into the decelerating phase over a distance called the dephasing length. It has 

been shown that the dephasing length increases linearly up to the ratio ωc/ωp ≤ 2.5 

and thereafter it becomes almost constant. The results indicate that the 

decelerating length or the accelerating length can be increased by the external 
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magnetic field and the relativistic gamma factor. Thus, the dephasing length can 

be enhanced over the conventional decelerating length by the strong magnetic 

field. Since the dephasing length increases with decreasing density, hence, the 

low plasma densities are required for longer acceleration lengths.  

    In chapter 4, we have presented a simple analytical model for 

generation of an attosecond pulse from the relativistic oscillating plasma mirror 

with E × B effect that leads to the rotation in the oscillating plasma mirror.   

     The interaction of an ultra-intense ultra-short laser pulse with an 

optically reflecting metal surface generates a dense plasma that acts as a plasma 

mirror (PM). These mirrors reflect the main part of the laser pulse and can be 

used as the active optical elements to manipulate the spatial and temporal 

properties of the high harmonics. The relativistic PM with E × B drift leads to the 

rotation in the oscillating PM. The drift results in a modification in the temporal 

contrast giving rise to an intense attosecond extreme ultraviolet (XUV) or X-ray 

pulses of energy in the energy range 1-10 J through nonlinear harmonic 

upconversion of the laser pulse. However, an intense laser pulse exerts high 

pressure on the plasma ( ≈ 5 Gbar for I ≈ 1019 W/cm2) that induces a significant 

motion of the plasma mirror surface, even during a femtosecond laser pulse. This 

leads to the spatial variation of intensity on the target giving rise to the 

deformation in the surface of the plasma mirror. Deformation in the relativistic 

plasma mirror surface in the form of an elliptical curvature can affect the spatial 

and spectral properties of the reflected beam. This in turn rotates the plasma 

mirror which could bring a change in spatio-temporal coupling mechanism and 

the Doppler shift of the reflected laser field. The rotational effects in the plasma 

mirror further increase the boundary displacement of the electrons and provide 

greater denting in the plasma electron density surface. As the oscillating surface 

rotates it creates an additional phase shift and distortion in the field of the 

reflected harmonic beams. This phase distortion repeats itself with periodicity of 

the driving laser field leading to the more harmonics of the incident frequency.  

  The E × B effect changes the harmonic divergence which could change 

the pattern of an extended ultra-broadband isolated attosecond pulse spectrum 
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and repetition rate. We have studied the effect of the rotation on the wavefront of 

the reflected laser field and the effect of the phase divergence on the generation 

of the attosecond pulse. The results of the harmonic generation and their 

dependence on the intensity of incident laser pulse have been presented. Also, the 

number of harmonics in the reflected laser field increases with the intensity of the 

incident laser beam.  The wave train of the attosecond pulses can be observed 

when intensity of the laser beam exceeds 1018 W/cm2. It is further found that the 

rotational effect in relativistic oscillating plasma mirror changes the denting 

mechanism of the reflected laser field and the phase coherence in the attosecond 

pulses. The rotational effect of plasma mirror due to E × B changes the phase 

parameter of the harmonics and increases the value of the focal length of the 

plasma mirror leading to the high repetition rate for attosecond pulses with 

increased intensity. It is also observed that the intensity of the attosecond pulses 

depends on the harmonic phases. 

    In chapter 5, the effect of magnetic field on the wakefield excitation 

for high intense ultra-short laser pulse in underdense magnetized plasma is 

analyzed.  

Plasma waves are generated through the displacement of plasma electrons 

by the ponderomotive force of a laser pulse. Electrons are trapped in large 

amplitude plasma waves. Under resonant condition, the trapped plasma electrons 

are accelerated to very high energies over very short distances by the longitudinal 

electric field of the waves. However, the laser plasma interaction distance is 

always less than or equal to the vacuum Rayleigh length due to the diffraction of 

the laser pulse in a plasma and hence eliminates the advantage of ultrahigh 

gradient acceleration. The higher accelerations can be obtained only by 

maintaining the higher magnitudes of the wakefield amplitude as well as the laser 

plasma interaction length. 

           The relation between the generated electric field and the externally 

applied magnetic field has been obtained. It is observed that the generation of the 

wakefield in the plasma due to the variation in the electron density depends on 

the external magnetic field. The magnitude of the wakefield increases with 
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magnetic field strength. The energy exchange is more effective at the higher 

values of the magnetic field. Our results match with the relativistic two 

dimensional PIC simulation of the propagation of a laser pulse in a magnetized 

plasma which gives an insight into the wakefield evolution. We use a laser pulse 

with the same typical set of parameters used earlier. 

   In conclusion, this thesis presents the study of nonlinear interaction of 

an intense ultra-short pulse laser with a magnetized plasma, especially, the 

mechanism of the generation of magnetic field, excitation of the wake and the 

effect of magnetic field on it and generation of an attosecond pulse. The 

analytical results obtained agree well to the PIC simulation results. Chapter 6 

summarizes the work presented in the thesis and also the scope for the future 

work. 
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Abstract. When an intense relativistic short laser pulse incident on an optically polished
surface, it generates a high density plasma that acts as a relativistic plasma mirror. As
this mirror reflects the intense laser field, its space time characterization changes due to high
nonlinear response of the field. This lead to the phase variation both temporally and spatially
that could affect the generation of high harmonics of the laser and attosecond pulses. The present
theoretical study address the issues of the intensity dependent space-time characteristics on the
generation of attosecond pulses from relativistic plasma mirror.

1. Introduction
The interaction of ultrashort-ultraintense laser (I ≥ 1020W/m2) pulse with an optically reflected
metal surface generates a dense plasma that acts as a plasma mirror(PM). These mirrors
specularly reflect the main part of the laser pulse and can be used as an active optical elements
to manipulate the spatial and temporal properties of the high harmonics. The modification
in the temporal contrast lead to generate an intense attosecond extreme ultraviolet(XUV) or
X-ray pulses of energy in the range 1-10 J through nonlinear harmonic up-conversion of the laser
pulse. However, pressure exerted by the laser pulse deformed the PM surface non-uniformly This
results in the rotation of the PM that effect the spatial and temporal contrast of the reflected
laser field and the high harmonics.

PMs are routinely used at moderate light intensities (1014 − 1016W/cm2) as ultrafast
optical switches, to enhance the temporal contrast of the femtosecond lasers. For intensities
I ≥ 1016W/cm2, nonlinear response of the PMs to the laser field results in sub-cycle temporal
modulations of the reflected field , associated to the high harmonic generation in its spectrum
(HHG).These harmonics generated through various mechanism are associated in the time domain
to the attosecond pulses.For lasers with intensity ≥ 1018W/cm2, the key HHG results in the
relativistic oscillating mirror where the laser driven oscillation of the plasma surface induces a
periodic Doppler effect on the reflected laser field [1, 2, 3, 4, 5, 8],which can result in harmonic
orders of several thousands. In these high intensity applications, laser field exerts such a high
pressure on the plasma (∼= 5GbarforI ≈ 1019W/cm2) that it induces a significant motion of the
PM surface, even during a femtosecond laser pulse. This leads spatial variation of intensity on
the target and hence the deformation in the surface of the PM.

Our present work is based on the spatiotemporal coupling (STC) to the generation of isolated
attosecond pulse. We consider deformation in the relativistic plasma mirror surface in the form of
an elliptical curvature-which can affect the spatial and spectral properties of the reflected beam.

http://creativecommons.org/licenses/by/3.0
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The intensity dependence of the harmonic spectrum and the attosecond pulse are described in
section 2. Conclusions are presented in section 3.

2. Intensity Dependence
It is observed that the wave train of the attoseond pulses can be observed when intensity of the
laser beam exceeds to 1018W/cm2. It is further concluded that the rotation effect in relativistic
oscillating plasma mirror change the denting mechanism of the reflected laser field and phase
coherence in the attosecond pulses. The rotation effect of plasma mirror due to E ×B changes
the phase parameter of the harmonics and increases the value of fh. This leads high repetition
rate for attosecond pulses with increased intensity.
When an electromagnetic wave reflected from an oscillating mirror, its frequency spectrum
extended to high frequency range and the wave breaks-up in the short waves. In relativistic
oscillating mirror, harmonics of much higher frequency are generated. The reflected wave’s
electric field from the oscillating mirror in a reflection time t′ = t− x(t)/c is given as

Er = −1

c

∂AL(t′,x′)

∂t′
(1)

where x′ and t′ are the position and time of the reflected waves in observer’s frame. The
oscillating mirror model implies that the tangential components of the vector potential are zero
at the mirror surface. The component of reflected electric field from the oscillating plasma
surface will be parallel to incident electromagnetic wave. As a result of it,if the oscillating
mirror moves with γL � 1 towards the laser pulse with oscillating frequency ωosc and electric
field Eq, and duration τL, the reflected electric field of the nth harmonics will be given as

Er ∝ nγ2LEl (2)

and the pulse duration will be

τ ′L ∝
τL
nγ2L

(3)

The Fourier spectrum of the electric field of reflected beam at position x′ and time t′ is

Er(Ωr) =
mcω

e
√

2π

∫ ∞
−∞

aL(t′,x′)

× exp−ιωLt
′ − ιωL(x′/c) exp (−ιφr) (4)

where
t′ − x(t′)/c = t (5)

and φr is the phase of reflected wave and is given by

φr =

∫ u

0
Ωr(u)du = ωL[2t′(u)− u] (6)

where u = t′ − x′(t′)/c and spatial position x′ and time t′ and t’(u) can be obtained from the
equation

t′(u) = u+ x′(t′(u))/c (7)

Differentiating above equation, we obtain

φ′r = ωL
1 + β′(u)

1− β′(u)
(8)
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where β′(u) = dx′(u)/cdt′ is the mirror velocity normalized by c. Using both power law and the
exponential decay parts, and properties of Array’s function to analyze the spectrum modulation
due to the E ×B effect, we use Eq.(4-6) in Eq(2) to obtain

Er =

(
ωL

Ω′rn

)5/2

exp

(
−16
√

5Ω′r

5
√
n3ωLω

3/2
p

)

×Re exp(ιΩ′rt− ιψ′r)
10
√

2/(5
√
n3ωp) + ιωL

(9)

where Ω′r = Ωr + Ωrot.
The amplitude of these reflected pulses decreases fast when Ωr grows. However, the pulse
duration does not depend on Ωr. Since the fundamental frequency grows as Ωr, the pulses
obtained with an above cut-off filter are filled with electric field oscillations. We use Eq.(9) to
obtain the intensity of nth harmonics as

Irn ∝

(
ωL

Ω′rn

)5

exp

(
−32
√

5Ω
′5/2
r

5
√
n3ωLω

3/2
p

)

×

(
n3ω2

p − ω2
L

)
8ω2

p

(10)

The intensity of the reflected pulses decreases with higher harmonics and plasma frequency.
However the pulse repetition rate increases when Ωr grows. It is observed that the intensity of
the attosecond pulses depend on the harmonic phases. if vr is the ultra relativistic velocity of
the reflected electric field of a particular harmonics at time t′(u), than the maximum relativistic
factor will be given as

γmax =
1√

1− vr(t′(u))2

c2

(11)

Consequently, for the surface γ factor during a relativistic spike, the highest harmonic will be
generated over the time period

∆t ≈ 1

ωLγ3max

≈ 1

ωLn
3/2
cr

(12)

where ncr is the critical density of plasma surface.
For this duration the reflected fields move with ultra-relativistic velocity in the direction of the
emitted radiation. The intensity variation over this time interval for nth harmonic can be written
as

In ∝

(
ncr
n3Ω′r

)5

exp

(
−32
√

5Ω
′5/2
r

5
√
n3ωLω

3/2
p

)

×

(
n3ω2

p − ω2
L

)
8ω2

p

(13)

Eq.(13) shows a theoretical result of temporal structure of the intensity of attosecond pulse trains
produced on plasma mirrors. The harmonic spectra associated with a train of attosecond pulses
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Figure 1. Harmonic spectra from plasma mirror

for different intensities is shown in the figure(1) The harmonic divergence θn of nth harmonics
is given

θ2n =

(
λn
πwn

)2

+

(
λn
πwn

)2

(nφL)2

θn = θ0n
√

1 + (nφL)2 (14)

where θ0n = λn/πwn is the harmonic divergence for the source size wn, in the absence of PM
curvature and rotational effect due to E ×B.

3. Conclusions
We have presented a simple analytical model for the generation of the attosecond pulse from
the relativistic oscillating plasma mirror with E ×B effect that leads rotation in the oscillating
plasma mirror. The E × B effect changes the harmonic divergence which could change the
pattern of extended ultra-broadband isolated attosecond pulse spectrum and repetition rate.
We have also addressed the temporal characterization of the reflected electric field from plasma
mirror, with temporal resolution going down to the attosecond range. It is further observed that
the number of harmonics in the reflected laser field increases with intensity of the incident laser
beam and electron plasma density.
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Abstract. A semiclassical approach of nonlinear interaction of intense circularly polarized
optical vortex Laguerre-Gaussian (LG) beam modes with a plasma channel is analyzed
theoretically and numerically. We study an exchange of angular momentum between the vortex
beam and plasma channel. The transfer of angular momentum and the generated magnetic
field are calculated. We have observed that both the generated magnetic field and angular
momentum transfer depend on beam mode, intensity, and the polarization state of beam mode.

1. Introduction
It is now well understood that light beam with helical phase front carries orbital angular
momentum (OAM) along their direction of propagation in addition to spin angular momentum
that describe their polarization. Photons in a light beam have spin σz~, where σz = ±1 refers
to the left and right circular polarization states respectively. For linear polarized beam,σz = 0
in the direction of propagation. In polarized light, spin of photons align in the direction of
propagation and contribute to a net spin angular momentum. The helical wavefront exists when
the wave vectors spiral around the beam axis and constitute to the OAM [1].

The current understanding of transfer of spin and orbital angular momentum suggest that any
beam with an amplitude distribution u(r, φ, z) = u0(r, φ, z) exp ι`φ, carries angular momentum
about the beam optical axis. These laser beams carry total angular momentum much greater
than that associated with the circularly polarized Gaussian laser beam. This problem was
addressed recently in plasma physics where its effect on various phenomenon of laser-plasma
interaction were taken into account. Cormier-Michel et al [6] and Stupakov et al [7] has recently
studied the excitation of quasi-magnetic field due to the interaction of LG higher modes with
plasma. Ali et al [4] pointed out that a linearly polarized beam in OAM state could also
generate magnetic field in plasma. The propagation of higher laser modes in plasma channel
was studied by York et al and has explained direct acceleration of electrons in a corrugated
plasma channel [8]. Nesterov et al [9] has analyzed the importance of transfer of OAM by
CPVBs to inhomogeneous plasma. Andersen et al [10] has demonstrated the coherent transfer
of the orbital angular momentum of a photon to an atom in quantized units of } using a 2-photon
stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in
the Bose-Einstein condensation of sodium atoms. Kyosuke Sakai et al [11] has recently studied
the excitation of multipole plasmons by an optical vortex beam and explained the transfer of
angular momentum between photons and plasmons.
In the present work, we have proposed a model that allow transfer of OAM of LG`p modes and
magnetic field generation in plasma channel at relativistic limit. We have theoretically examined
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that a normal incident CPVBs with a specific azimuthal mode can excite the magnetic field and
couple to the plasmons of spiraling plasma electrons which results into the transfer of angular
momentum of CPVBs to plasma electrons. We have demonstrated that the transfer of OAM
and magnetic field generation depend on the mode and the polarization states of the vortex
beam.

The paper is organized as follows: In section 2, the governing Equations of the angular
momentum transferred to plasma electrons is derived using semiclassical approach. The
conclusions are presented in section 3.

2. The Model
The OAM of LG`p modes impart helicoidal motion to the plasma electrons and form vortices
like structure in a plane perpendicular to the direction of beam propagation. Evolution of these
structures result into the excitation of asymmetric quasi-static magnetic fields which depend on
the order of beam mode and an axial phase velocity vph,z = c(1 − 1/k(∂θlp/∂z)). Hence, the
average torque received by electrons per unit volume also be depend on the beam mode.
An Equation for the average rate of change of angular momentum of the electrons per unit
volume is given as

men
d(rvφ)

dt
= −enr(Eφ + vzBr − vrBz)−

dMz

dt
, (1)

where Eφ is the azimuthal electric field, Br and Bz are respectively radial and axial magnetic
fields. And Mz is the axial angular momentum density of photons per unit wavelength. The
term mevφr is the angular momentum of electrons in the z direction and dMz/dt refers to the
pressure like term of quasi-static magnetic field. The relation for Eφ is given by

Eφ '
−1

eωL

∂I

∂r
(2)

We observed that the total angular momentum is non-zero for the plane polarized light
(σz = 0). Following [?] and Faraday’s law, the time derivative of the generated axial magnetic
field is given as

∂Bz
∂t

=
1

enr3chL

d

dt

(
1

2ωc

∂

∂r

(
r
∂I(r, z, φ)

∂r

)
×

(`pz + p± σz)} cos θlpz) . (3)

Integrating Eq.(6) within the time limit t=0 and t and assuming that the damping rate of the
laser energy over this period is almost negligible, the generated magnetic field in plasma channel
turns out to be of the following form

Bz =
η(r)

enr3chωLc

(
∂

∂r

(
r
∂I

∂r

)
×

(`pz + p± σz)} cos θlpz) , (4)

It is important to note here that for linearly polarized light Bz is nonzero.
To estimate Bz in Mega Gauss (MG), we assume ∂/∂r = 1/rch. Thus Eq.(7) can be written

as

Bz = η(r)

(
λ2

r2ch

)(nc
n

) [(
`pz + p± σz)} cos θlpz

]

(
I(r, φ)λ2

7.3× 1022Wm−2(µm)2

)
, (5)
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Figure 1. The generated axial magnetic field Bz of mode LG1
0 at different values of the phase

shifts (a)θlpz = 0(b)θlpz = π/3 (c) θlpz = π/4 and (d)θlpz = π/6 . The continuous and dashed
lines respectively refers to the variation right circular and left circular polarized beam.

where λ is wavelength of the laser beam, nc is critical density (which is approximately
1.1× 1015m−3).

The intensity profile of LG beam modes in the focal plane (z=0) is given as

I(r, φ) = I0
(−1)2`p!

(`+ p)!
exp (−ρ2)× (

√
2ρ)2`

×L`p(ρ2) cos2(θlpz), (6)

where I0 = a20(4ω
2/k2π2)(1/(w2

0(1+δ20`)) is the maximum intensity of LG beam. It is clear from
Eqs.(8-9) that the generated axial magnetic field depends on the beam mode, plasma density,
channel width, the phase shift θlpz, and polarization state of the beam. The generated axial
magnetic field for the mode LG0

0(` = 0, p = 0) can be obtained via Eq.(8) and Eq.(9) and read
as

Bz ≈
I0η(r) cos θpl
enr3chωc

[
σz} cos θlpz exp (−ρ2)

]
, (7)

for LG1
0(`pz ≈ 1 and p = 0), we have

Bz ≈
I0η(r)

enr3chωc

[
(1± σz)(1− ρ2)} cos θlpz

]
exp (−ρ2), (8)

Figure 1 shows the variation of the generated magnetic field as a function of r for different
values of beam phase transfer and polarization states for right and circularly polarized beams
of LG1

0 mode. The continuous and broken curves show the variation for right circular and left
circular polarized beams respectively. We have observed that the magnitude of the generated
magnetic field for right circular polarized beam mode is higher than the left circularly polarized
beam.

Figure 2 shows the variation of an angular momentum density Mz of the plasma electrons
as a function of r for the different beam modes LG0

0, LG
1
0, and LG2

0. It is observed that the
angular momentum density transfer increases with increasing mode order and also depends on
the polarization state of the beam modes.

3. Conclusion
In the present work, we have examined theoretically and numerically the effect of polarization
states on the transfer of angular momentum and the generated magnetic field of CPVBs in the

Frontiers of Physics and Plasma Science                                                                                             IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 836 (2017) 012031         doi:10.1088/1742-6596/836/1/012031

3



Figure 2. The variation of orbital angular momentum density Mz as a function of r for different
modes (a)LG2

0(b)LG1
0, and (c) LG0

0..The continuous and broken curve refers to the variation of
right circular and left circular polarized beam respectively.

plasma channel using a semi-classical approach. We note that both the generated magnetic field
and the angular momentum transfer depends on the LG`p mode order, polarization state of beam
and the intensity of beam. The present study may be useful in various context of laser plasma
interaction such as in angular dependent wake fields, various laser acceleration schemes, laser
fusion research, generation of electron vortex beams and in photonic science.
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